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Abstract: This study presents the synthesis and characterization of novel sulfamethoxazole organotin
complexes and evaluates their potential for hydrogen storage applications. The synthesized com-
plexes were characterized using various techniques, such as Nuclear Magnetic Resonance and Fourier
Transform Infrared spectroscopy to determine their constructional and physicochemical properties.
Field Emission Scanning Electron Microscopy was applied to analyze the surface morphology, and the
Brunauer–Emmett–Teller method was utilized to measure the surface area. High-pressure adsorption
experiments demonstrated the remarkable hydrogen storage capabilities of these complexes, with
the highest hydrogen uptake of 29.1 cm3/g observed at 323 K. The results suggest that the prepared
sulfamethoxazole organotin complexes have the potential to be candidates for gas separation and
storage applications.
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1. Introduction

Ongoing efforts persist in the quest for exceptionally efficient porous materials to
alleviate the detrimental impacts of carbon dioxide on well-being and the natural surround-
ings. Carbon dioxide (CO2) is a significant driver of global warming as it is one of the top
greenhouse gases (GHGs) that evidentially contributes to raising the earth’s temperatures,
posing a threat to the long-term viability of life [1]. Fossil fuel production and combus-
tion emit different GHGs, so finding an alternative source of energy has become crucial
nowadays. As an illustration, fossil fuel power plants produce 85% of the global electrical
supply and are substantial contributors to CO2 emissions. This has a significant impact
on global climate change [2–5]. Hydrogen is considered one of the most environmentally
friendly energy sources, generating only water as a byproduct when combusted [6]. As a
result, advancing efficient and safe hydrogen storage methods is vital [7]. A conventional
approach to storing hydrogen is through chemisorption, with much research centered on
metal hydrides [8]. Alternatively, hydrogen can be stored via physisorption in porous
materials like porous carbons, which offer advantages such as high stability and easy
accessibility [9]. The temperature at which adsorption takes place mostly depends on two
factors: the reaction potential and the design or structure of the adsorbents. Therefore, it is
essential to conduct comprehensive physical and chemical studies to examine the bonding
states and interactions of functional groups on the surface of the adsorbent [10].

Characterizing pore size distribution is crucial in the description of porous materi-
als. In fact, porous materials possess pores of varying sizes and numbers, which can be
categorized as either closed or open pores depending on their degree of openness. As per
the classifications provided by the International Union of Pure and Applied Chemistry
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(IUPAC), pores are classified as either closed or open based on their level of accessibility.
However, porous materials are divided into three subgroups depending on the diameter of
the pores (d): macroporous (d > 50 nm), mesoporous (2 nm < d < 50 nm), and microporous
(d < 2 nm) [11]. Current studies focused on a range of porous substances, such as molecular
sieves, activated carbon, ceramics, organic polymers (such as the metal–organic compounds
(MOF) and covalent organic compounds (COF)), and other nanomaterials [12–18].

Significant progress has been made in exploring novel adsorbents for hydrogen cap-
ture, which has motivated our group to investigate heterocyclic compounds containing
sulfamethoxazole. These compounds exhibit high biological activity [19], acting as antibi-
otics and containing two distinct aromatic rings with substantial quantities of nitrogen,
oxygen, and sulfur [20,21]. We investigated the potential of enhancing H2 adsorption by
utilizing certain characteristics. To do this, we conducted a unique synthesis based on
Schiff’s laws and utilized this method to assess hydrogen capture.

This study investigates the utilization of sulfamethoxazole as a ligand for the synthesis
of novel tin complexes, which were subsequently evaluated for their potential as hydrogen
storage materials. Various methods were applied to test the physical, chemical, and
morphological characteristics of the produced complexes. The results indicate that these
materials exhibit potential for gas storage applications, offering a possible solution to
concerns regarding gas pollution and global warming.

2. Experimental Setup
2.1. Instruments

FTIR spectra were obtained using a Bruker Fourier Transform Infrared (FTIR) spectrom-
eter from Japan. The carbon, nitrogen, and hydrogen elemental analysis of the fabricated
Schiff bases was performed utilizing a Vario EL III elemental analyzer made by Elementar
Americas Inc., NY, USA. SEM pictures were acquired by applying a KYKY-EM3200 micro-
scope working at an acceleration voltage of 25 kV. An elemental dispersive X-ray (EDX)
examination was conducted on the complexes using a TESCAN MIRA3 LMU apparatus in
Kohotovice, Czech Republic. The analysis was performed with an accelerating voltage of
15 kV. Proton nuclear magnetic resonance (1H-NMR) spectra were obtained employing a
400 MHz instrument, whereas tin-119 nuclear magnetic resonance (119Sn-NMR) spectra
were acquired employing a Bruker DRX300 NMR spectrometer (Bruker, Zürich, Switzer-
land) operating at 107 MHz. The substances were dissolved in deuterated dimethyl sulfox-
ide (DMSO-d6). Nitrogen (N2) adsorption and desorption isotherms were determined at
a temperature of 77 K using a Quantachrome analyzer manufactured by Quantachrome
Instruments in Boynton Beach, FL, USA. Prior to measurement, the samples were subjected
to a drying process at a temperature of 120 ◦C in a vacuum oven (Cascade TEK, Cornelius,
OR, USA) for a duration of 2 h, with a continuous flow of dry nitrogen gas. The specific
surface area was estimated by applying the Brunauer–Emmett–Teller (BET) relationship at
a relative pressure (P/P0) of 0.98. In addition, the Barrett–Joyner–Halenda (BJH) method
was applied to assess pore size distribution.

2.2. Fabrication of Sulfamethoxazole with Para Dimethyl Amino Benzaldehyde (L)

A mixture of 0.01 mole (1.49 g) of aldehyde (4-dimethylaminobenzaldehyde) was
dissolved in 10 mL of absolute ethanol. Later, a few drops of glacial acetic acid were mixed
with the solution. After 1 h, 0.01 mole (2.53 g) of sulfamethoxazole, dissolved in 10 mL of
ethanol, was filled to the mixture and refluxed for 3–4 h. The reaction was observed by TLC
utilizing a hexane acetate (3:1) solvent system. After the reaction, the solution was allowed
to cool down to ambient temperature, and the colored precipitate was filtered, rinsed with
cold ethanol, and dried at an ambient temperature for 24 h. The resulting Schiff base is
depicted in Scheme 1.
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[Bu2SnL2] Auburn 156–158 81 
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Important data for functional groups were obtained from the FTIR analysis. For the 
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Scheme 1. Synthesis of sulfamethoxazole Schiff base.

2.3. Fabrication of Inorganic Complexes of Organotin Compounds with Ligand

Complexes were prepared using a molar ratio of 1:2 (organotin). Appropriate amounts
of Ph2SnCl2 (3.438 g, 0.01 mol), Bu2SnCl2 (3.038 g, 0.01 mol), and Me2SnCl2 (2.197 g,
0.01 mol) were each dissolved in 5 mL of methanol. Following that, these solutions were
added to a stirred solution of L (sulfamethoxazole with 4-dimethylaminobenzaldehyde)
(5.06 g, 0.02 mol) in 5 mL of ethanol; this blend was refluxed for 8 h. The final solution was
filtered, heated to dry, and recrystallized to form precipitates, as illustrated in Scheme 2.
Furthermore, Table 1 shows the physical properties of the synthesized sulfamethoxazole
tin complexes.
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Scheme 2. Complexation of Schiff base with organotin.

Table 1. Physical properties of sulfamethoxazole tin complexes.

Compounds Color M.P. (◦C) Yield (%)

L Yellowish orange 176–178 87
[Ph2SnL2] Orange 167–169 84
[Bu2SnL2] Auburn 156–158 81
[Me2SnL2] Orange 144–146 75

3. Results and Discussion
3.1. FTIR Spectroscopy

Important data for functional groups were obtained from the FTIR analysis. For
the Schiff base (L), the NH2 bands at 3462 cm−1 and 3372 cm−1 disappeared, and the
imine (C=N) band appeared at 1660 cm−1. The asymmetric and symmetric S=O bands
were at 1363 cm−1 and 1151 cm−1. After the reaction between the Schiff base and the
three organotin compounds, many bands shifted, and new bands appeared, indicating
the linkage between the O and N atoms with the Sn metal. All these changes are listed
in Table 2.
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Table 2. FTIR bands of Schiff base and sulfamethoxazole tin complexes.

Compound NH2
Amine

v (NH)
Amid

v (C=N)
Schiff Base

v (C=N)
Lactam

v (S=O)
Asym.

v (S=O)
Sym.

v(Sn-
N)

v
(Sn-O)

Sulfamethoxazole 3462
3372 3295 - 1592 1359 1151 - -

Schiff base (L) 3282 1660 1596 1363 1155 - -
[Ph2SnL2] - 1645 1588 1368 1159 560 457
[Bu2SnL2] 3282 1654 1585 1364 1156 524 -
[Me2SnL2] 3293 1650 1583 1332 1155 552 467

3.2. 1H-NMR Spectra

The 1H-NMR spectrum of the synthesized Schiff base (L) in DMSO-d6 displayed a
singlet at δ = 2.88 ppm, which was assigned to the protons of the CH3 group. The signal at
a chemical shift of δ = 2.27 ppm was attributed to the CH3 protons of the isoxazole ring.
The protons of the two aromatic benzene rings appeared as a multiplet in the range of
δ = 6.63–7.94 ppm. The proton of the CH=N group was observed as a singlet at
δ = 8.87 ppm [22,23]. Meanwhile, the NH proton was identified by a signal at δ = 10.36 ppm,
as shown in Figure S1 in the Supplementary File.

3.3. 13C-NMR Spectra

This analysis is used in chemistry to study carbon nuclei, aiding in determining the
structures of unknown compounds and establishing a definitive formula. Carbon NMR
offers direct insights into the structure of the synthesized compounds [24]. The detailed
results are presented in Table 3 and Figure S2 in the Supplementary File.

Table 3. 13C-NMR data for Schiff base.

Compound
13C-NMR (400 MHz): DMSO-d6, δ, ppm

in Hz)
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3.4. Characterization by (119Sn-NMR) Spectroscopy 
Sn-NMR spectroscopy was employed to investigate the structural characteristics of 

organotin(IV) complexes [25,26]. The results, which depend on the chemical transfor-
mations influenced by the tin coordination number, revealed a single sharp peak, indicat-
ing the presence of a single type of tin species. The 119Sn-NMR spectra of the tin complexes 
were recorded in DMSO-d6 solvent. The chemical shift data are presented in Table 4, with 
additional details provided in Figures S3–S5 in the Supplementary File. 

Table 4. 119Sn-NMR spectra for sulfamethoxazole tin complexes. 

Compound δ ppm 
Ph2SnL2 −404.93 
Bu2SnL2 −215.01 
Me2SnL2 −242.53 

174.96, 166.33, 160.13, 156.02, 155.37, 136.14,
131.93, 130.42, 123.30, 118.69, 112.26, 99.80,

42.60, 13.65.

3.4. Characterization by (119Sn-NMR) Spectroscopy

Sn-NMR spectroscopy was employed to investigate the structural characteristics of
organotin(IV) complexes [25,26]. The results, which depend on the chemical transforma-
tions influenced by the tin coordination number, revealed a single sharp peak, indicating
the presence of a single type of tin species. The 119Sn-NMR spectra of the tin complexes
were recorded in DMSO-d6 solvent. The chemical shift data are presented in Table 4, with
additional details provided in Figures S3–S5 in the Supplementary File.

Table 4. 119Sn-NMR spectra for sulfamethoxazole tin complexes.

Compound δ ppm

Ph2SnL2 −404.93
Bu2SnL2 −215.01
Me2SnL2 −242.53

3.5. FESEM Analysis

The morphology of the ligand and metal complexes was analyzed utilizing FESEM.
The FESEM pictures, as illustrated, show a heterogeneous structure with good porosity of
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various sizes and shapes, which is reliable for hydrogen gas storage. These characteristics
are shown in Figure 1.

Hydrogen 2024, 5, FOR PEER REVIEW 5 
 

 

3.5. FESEM Analysis 
The morphology of the ligand and metal complexes was analyzed utilizing FESEM. 

The FESEM pictures, as illustrated, show a heterogeneous structure with good porosity of 
various sizes and shapes, which is reliable for hydrogen gas storage. These characteristics 
are shown in Figure 1. 

  
(a) 

  
(b) 

  
(c) 

Figure 1. Cont.



Hydrogen 2024, 5 877Hydrogen 2024, 5, FOR PEER REVIEW 6 
 

 

  
(d) 

Figure 1. SEM pictures of (a) sulfamethoxazole Schiff base (L), (b) Ph2SnL2, (c) Bu2SnL2, and (d) 
Me2SnL2. 

3.6. Measurements Nitrogen Adsorption of Metal Complex 
The specific surface area was estimated by applying the Brunauer–Emmett–Teller 

(BET) method, which involved analyzing nitrogen (N2) adsorption–desorption isotherms 
[27]. The adsorbents’ porosity provides valuable information about their physicochemical 
interactions with the gas they absorb. The adsorption isotherm for sulfamethoxazole tin 
complexes is categorized as type III, suggesting that monolayer formation is absent. 

The pore volume and BET surface area were determined by analyzing nitrogen ad-
sorption–desorption isotherms at a relative pressure of 0.9. The BJH method was em-
ployed to compute the pore size and volume; the specific outcomes are given in Table 5. 
The pore volume and BET surface area were found using nitrogen adsorption, whereas 
the average pore diameter according to the BJH method was obtained from the desorption 
data provided in Figure 2a–c. 

 
(a) 

0

5

10

15

0 0.2 0.4 0.6 0.8 1

ADS DES
p/p0

V a
/c

m
3 (S

TP
) g

-1

Figure 1. SEM pictures of (a) sulfamethoxazole Schiff base (L), (b) Ph2SnL2, (c) Bu2SnL2, and
(d) Me2SnL2.

3.6. Measurements Nitrogen Adsorption of Metal Complex

The specific surface area was estimated by applying the Brunauer–Emmett–Teller (BET)
method, which involved analyzing nitrogen (N2) adsorption–desorption isotherms [27].
The adsorbents’ porosity provides valuable information about their physicochemical in-
teractions with the gas they absorb. The adsorption isotherm for sulfamethoxazole tin
complexes is categorized as type III, suggesting that monolayer formation is absent.

The pore volume and BET surface area were determined by analyzing nitrogen
adsorption–desorption isotherms at a relative pressure of 0.9. The BJH method was em-
ployed to compute the pore size and volume; the specific outcomes are given in Table 5.
The pore volume and BET surface area were found using nitrogen adsorption, whereas
the average pore diameter according to the BJH method was obtained from the desorption
data provided in Figure 2a–c.

Table 5. Surface area, pore volume, and average pore diameter of sulfamethoxazole tin complexes.

Comp. SBET (m2.g–1) Pore Volume (cm3.g–1) Average Pore Diameter (nm)

Ph2SnL2 3.049 ± 0.42 0.018 ± 0.001 24.2 ± 2.71
Bu2SnL2 13.792 ± 1.89 0.026 ± 0.002 7.2 ± 0.99
Me2SnL2 5.5197 ± 0.84 0.024 ± 0.002 17.4 ± 2.46
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Figure 2. N2 adsorption (ADS) and desorption (DES) isotherms of sulfamethoxazole (a) di phenyl,
(b) di butyl, and (c) di methyl tin complexes.

3.7. Hydrogen Uptake of Sulfamethoxazole Tin Complexes

The gas adsorption capacity of the fabricated complex was measured employing a
high-pressure volumetric adsorption instrument, namely, the H-sorb 2600. The complex
underwent degassing under vacuum and was subjected to heating at 100 ◦C for a duration
of 1 h in order to remove any solvent or water that could be trapped within the pores. To
ensure precision, the gas absorption test was again conducted using the same conditions to
identify the ideal pressure. The factors that influence gas adsorption are the size of the pores,
the charge of the metal, the kind of ligand, and the strength of the contact, like hydrogen
bonds and Van der Waals forces, between the adsorbate and adsorbent [28,29]. Pore volume
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is essential in assessing gas adsorption capacity, with larger pores enabling greater gas
storage. Additionally, strong attractive forces, including electrostatic interactions and
Van der Waals forces, noticeably enhance H2 uptake [30–32]. Figure 3 illustrates the gas
adsorption isotherms for sulfamethoxazole tin complexes.
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Figure 3. Hydrogen uptake for sulfamethoxazole tin complexes.

The H2 uptake capacities of the fabricated complexes were comparable to those of
polyphosphate and fusidate metal complexes used as adsorbents (Table 6). However, in
the present study, high pressure is required to restrict the applicability of the fabricated
materials as hydrogen storage media [33]. The mechanism for H2 uptake in both cases in-
volves physisorption, where hydrogen molecules interact with the surface of the complexes
through weak van der Waals forces. The surface area and pore structure of the complexes
influence this interaction. The L2SnR2 complexes exhibit similar mechanisms due to their
structural similarities, as described in the manuscript.

Table 6. Hydrogen uptake capacity of various adsorbents.

Adsorbent Hydrogen Uptake (cm3/g) Condition References

Bu2SnL2 29.1 ± 1.46 323 K and 50 bar Current work
Fusidate zinc

complex 2.8 323 K and 50 bar [30]

Polyphosphate 7.4 323 K and 50 bar [34]

4. Conclusions

This study successfully synthesized and characterized novel sulfamethoxazole organ-
otin complexes using various techniques, including NMR, FTIR spectroscopy, FESEM,
and BET surface area analysis. The complexes demonstrated significant hydrogen storage
capabilities, where the highest hydrogen uptake was observed at 323 K. These complexes’
structural and surface characteristics, such as morphology and porosity, were found to play
crucial roles in their gas adsorption properties. The sulfamethoxazole dibutyl tin complex
had a surface area of 13.792 m²/g among the three prepared complexes. The gas adsorption
was affected by the gas composition, the metal used within the complex, and the volume
and diameter of the surface pores. The findings suggest that sulfamethoxazole organotin
complexes could solve gas pollution and global warming problems by separating and
storing gas. These complexes could be used in sustainable energy storage systems after
further optimization and application research.
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