Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adhesives Preparation
2.2. Double Lap Specimens’ Preparation
2.3. Tensile Shear Specimens’ Preparation
2.4. Conditioning Treatments
2.5. Mechanical Characterizations
2.6. Rheological Measurements
3. Results
3.1. Double Lap Specimen Characterization
3.2. Determination of Chitosan-Based Adhesive Classification for Non-Structural Applications
3.3. Rheology Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frihart, C.R. Wood adhesion and adhesives. In Handbook of Wood Chemistry and Wood Composite; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; Chapter 9; pp. 215–278. [Google Scholar]
- Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, O.; Halis, R. Lignin-based copolymer adhesives for composite wood panels—A review. Int. J. Adhes. Adhes. 2019, 95, 102408. [Google Scholar] [CrossRef]
- Danielson, B.; Simonson, R. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J. Adhes. Sci. Technol. 1998, 12, 923–939. [Google Scholar] [CrossRef]
- Khan, M.A.; Ashraf, S.M.; Malhotra, V.P. Eucalyptus bark lignin substituted phenol formaldehyde adhesives: A study on optimization of reaction parameters and characterization. J. Appl. Polym. Sci. 2004, 92, 3514–3523. [Google Scholar] [CrossRef]
- Peruzzo, P.J.; Bonnefond, A.; Reynes-Mercado, Y.; Fernandez, M.; Fare, J.; Ronne, E.; Leiza, J.R.; Paulis, M. Beneficial in-situ incorporation of nanoclay to waterborne PVAc/PVOH dispersion adhesives for wood applications. Int. J. Adhes. Adhes. 2014, 48, 295–302. [Google Scholar] [CrossRef]
- EN204. European standard EN 204:2001; European Committee for Standardization: Brussels, Belgium, 2001. [Google Scholar]
- Norström, E.; Fogelström, L.; Nordqvist, P.; Khabbaz, F.; Malmström, E. Gum dispersions as environmentally friendly wood adhesives. Ind. Crops Prod. 2014, 52, 736–744. [Google Scholar] [CrossRef]
- Pizzi, A. Recent developments in eco-efficient bio-based adhesives for wood bonding: Opportunities and issues. J. Adhes. Sci. Technol. 2006, 20, 829–846. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; Elchinger, P.-H.; de Baynast, H.; Pierre, G.; Delattre, C.; Michaud, P. Chitosan as an adhesive. Eur. Polym. J. 2014, 60, 198–212. [Google Scholar] [CrossRef]
- Basturk, M.A. Heat applied chitosan treatment on hardwood chips to improve physical and mechanical properties of particleboard. BioResources 2012, 7, 4858–4866. [Google Scholar] [CrossRef]
- Mathias, J.-D.; Grediac, M.; de Baynast, H.; Michaud, P.; Patel, A. Adhesive Composition Including Deacetylated Chitosan. U.S. Patent 9,670,387, 6 June 2017. [Google Scholar]
- Umemura, K.; Inoue, A.; Kawai, S. Development of new natural polymer-based wood adhesive I: Dry bond strength and water resistance of Konjac glucomannan, chitosan and their composites. J. Wood Sci. 2003, 49, 221–226. [Google Scholar] [CrossRef]
- Norström, E.; Demircan, D.; Fogelström, L.; Khabbaz, F.; Malmström, E. Green binders for wood adhesives. Appl. Adhes. Bond. Sci. Technol. 2018, 13–70. [Google Scholar] [CrossRef] [Green Version]
- Paiva, D.; Gonçalves, C.; Vale, I.; Bastos, M.; Magalhaes, F. Oxidized Xanthan Gum and Chitosan as Natural adhesives for Cork. Polymers 2016, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.H.; Hwa, H.-D. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr. Polym. 1996, 29, 353–358. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; Delattre, C.; de Baynast, H.; Grédiac, M.; Mathias, J.-D.; Ursu, A.V.; Desbrières, J.; Michaud, P. Alkyl-chitosan-based adhesive: Water resistance Improvement. Molecules 2019, 24, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noto, K.; Matsumoto, S.; Takahashi, Y.; Hirata, M.; Yamada, K. Adhesion of surface grafted low density polyethylene plates with enzymatically modified chitosan solutions. J. Appl. Polym. Sci. 2009, 113, 3963–3971. [Google Scholar] [CrossRef]
- Umemura, K.; Iijima, Y.; Kawai, S. Development of New Natural Polymer-based Wood Adhesives II. Effects of Molecular Weight and Spread Rate on Bonding Properties of Chitosan. J. Adhes. Soc. Jpn. 2005, 41, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Michaud, P.; Petit, E.; de Baynast, H.; Grédiac, M.; Mathias, J.-D. Development of a chitosan-based adhesive. Application to wood bonding. J. Appl. Polym. Sci. 2012, 127, 5014–5021. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; de Baynast, H.; Vial, C.; Audonnet, F.; Sun, S.; Petit, E.; Pennec, F.; Prevot, V.; Michaud, P. Physico-chemical, thermal and mechanical approaches for the characterization of solubilized and solid state chitosans. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- EN205. European standard EN 205:2001; European Committee for Standardization: Brussels, Belgium, 2001. [Google Scholar]
- Williamson, R.; Patterson, G.; Hunt, J. Estimation of Brushing and Flowing properties of paints from Plasticity data. Ind. Eng. Chem. 1929, 21, 1111–1115. [Google Scholar] [CrossRef]
- Norström, E.; Fogelström, L.; Nordqvist, P.; Khabbaz, F.; Malmström, E. Xylan—A green binder for wood adhesives. Eur. Polym. J. 2015, 67, 483–493. [Google Scholar] [CrossRef]
- Crini, G.; Guibal, E.; Morcellet, M.; Torri, G.; Badot, P.M. Chitine et Chitosane, Préparation, propriétés et principales applications. In Chitine and Chitosane. Du biopolymère à L’application; Presses Universitaires de Franche-Comté: Besançon, France, 2009; Chapter 1; pp. 20–50. [Google Scholar]
- Calero, N.; Munoz, J.; Ramirez, P.; Guerrero, A. Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocoll. 2010, 24, 659–666. [Google Scholar] [CrossRef]
- Desbrières, J. Viscosity of semiflexible chitosan solutions: Influence of concentration, temperature and role of intermolecular interactions. Biomacromolecules 2002, 3, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.A. Technology of Wood Bonding: Principles in Practice, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1992; pp. 76–80. [Google Scholar]
- Linlock, A.J. The science of Adhesion Part I: Surface and interfacial aspects. J. Mat. Sci. 1980, 15, 2141–2166. [Google Scholar]
- Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Peck, G.E. Physical properties and molecular behavior of chitosan films. Drug Dev. Ind. Pharm. 2001, 27, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Wenling, C.; Duohui, J.; Jiamou, L.; Yandao, G.; Nanming, Z.; Xiufang, Z. Effects of the Degree of Deacetylation on the Physicochemical Properties and Schwann Cell Affinity of Chitosan Films. J. Biomater. Appl. 2005, 20, 157. [Google Scholar] [CrossRef] [PubMed]
Mw (g·mol−1) | Mn (g·mol−1) | Đ | DD (%) | References | |
---|---|---|---|---|---|
CSA | 3.038 × 105 | 2.251 × 105 | 1.35 | ≥75 | [19] |
CSB | 9.842 × 104 | 8.671 × 104 | 1.135 | 90 | [20] |
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | |
---|---|---|---|---|---|
Wet Spread rate (solid spread rate) (g·m−2) | 200 (9.99) | 326 (16.29) | 500 (24.98) | 710 (35.48) | 1000 (49.97) |
Open assembly time (min) | 0 | 5 | 10 | 15 | 20 |
Drying temperature (°C) | 18 | 39 | 55 | 76 | 92 |
Drying time (min) | 30 | 60 | 105 | 150 | 180 |
Adhesive spread rate | 500 g·m−2 |
Open assembly time | 120 s |
Closed assembly time | 180 s |
Pressing temperature | 55 °C |
Pressing pressure | 0.7 N·mm−2 |
Pressing time | 2 h |
Sequence Number | Adhesive Strength in MPa Durability Classes | ||||
---|---|---|---|---|---|
Sequence Number | Durations and Conditions | D1 | D2 | D3 | D4 |
1 | 7 days in standard atmosphere | ≥10 | ≥10 | ≥10 | ≥10 |
2 | 7 days in standard atmosphere 3 h in water at (20 ± 5) °C 7 days in standard atmosphere | -- | ≥8 | -- | -- |
3 | 7 days in standard atmosphere 4 days in water at (20 ± 5) °C | -- | -- | ≥2 | ≥4 |
4 | 7 days in standard atmosphere 4 days in water at (20 ± 5) °C 7 days in standard atmosphere | -- | -- | ≥8 | -- |
5 | 7 days in standard atmosphere 6 h in boiling water 3 h in water at (20 ± 5) °C | -- | -- | -- | ≥4 |
Temperature | |||||
---|---|---|---|---|---|
Wet Spread Rate (Dry Spread Rate) | 18 °C | 39 °C | 55 °C | 76 °C | 92 °C |
200 g·m−2 (9.99 g·m−2) | 0.61 MPa (10/105) | ||||
326 g·m−2 (16.29 g·m−2) | 0.98 MPa (5/150) | 1.82 MPa (5/60) | |||
1.03 MPa (15/150) | 1.14 MPa (15/60) | ||||
500 g·m−2 (24.98 g·m−2) | 1.83 MPa (10/180) | 2.17 MPa (0/105) | 1.70 MPa (10/30) | ||
1.91 MPa (10/105) | |||||
1.11 MPa (20/105) | |||||
710 g·m−2 (35.48 g·m−2) | 2.38 MPa (5/150) | 2.32 MPa (5/60) | |||
1.62 MPa (15/150) | 2.08 MPa (15/60) | ||||
1000 g·m−2 (49.97 g·m−2) | 2.84 MPa (10/105) |
Formulation | Bond Strength (MPa) |
---|---|
CSB 4% (w/v) + acetic acid 1% + glycerol 1% | 1.92 |
CSB 6% (w/v) + acetic acid 1% + glycerol 1% | 2.82 |
CSB 8% (w/v) + acetic acid 1% + glycerol 1% | 3.57 |
Sequence Number | Duration and Conditions | Shear Strength (MPa) | |
---|---|---|---|
CSA-Based Adhesive | CSB-Based Adhesive | ||
1 | 7 days in standard atmosphere | 14.48 ± 1.52 | 13.41 ± 0.83 |
2 | 7 days in standard atmosphere 3 h in water at (20 ± 5) °C 7 days in standard atmosphere | 14.75 ± 1.53 | 13.72 ± 0.61 |
3 | 7 days in standard atmosphere 4 days in water at (20 ± 5) °C | 1.11 ± 0.27 | 2.15 ± 0.62 |
4 | 7 days in standard atmosphere 4 days in water at (20 ± 5) °C 7 days in standard atmosphere | 11.97 ± 4.61 | 10.74 ± 3.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmoula, M.; Ben Hlima, H.; Michalet, F.; Bourduche, G.; Chavant, J.-Y.; Gravier, A.; Delattre, C.; Grédiac, M.; Mathias, J.-D.; Abdelkafi, S.; et al. Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions. Polysaccharides 2021, 2, 110-120. https://doi.org/10.3390/polysaccharides2010008
Abdelmoula M, Ben Hlima H, Michalet F, Bourduche G, Chavant J-Y, Gravier A, Delattre C, Grédiac M, Mathias J-D, Abdelkafi S, et al. Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions. Polysaccharides. 2021; 2(1):110-120. https://doi.org/10.3390/polysaccharides2010008
Chicago/Turabian StyleAbdelmoula, Maisa, Hajer Ben Hlima, Frédéric Michalet, Gérard Bourduche, Jean-Yves Chavant, Alexis Gravier, Cédric Delattre, Michel Grédiac, Jean-Denis Mathias, Slim Abdelkafi, and et al. 2021. "Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions" Polysaccharides 2, no. 1: 110-120. https://doi.org/10.3390/polysaccharides2010008
APA StyleAbdelmoula, M., Ben Hlima, H., Michalet, F., Bourduche, G., Chavant, J. -Y., Gravier, A., Delattre, C., Grédiac, M., Mathias, J. -D., Abdelkafi, S., Michaud, P., & de Baynast, H. (2021). Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions. Polysaccharides, 2(1), 110-120. https://doi.org/10.3390/polysaccharides2010008