Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers
Abstract
:1. Introduction
2. Mechanism of Adsorption and Related Thermodynamic Factors
3. Polysaccharide-Based Biopolymers for CO2 Capture
3.1. Cellulose
3.2. Chitosan
3.3. Lignin
3.4. Cyclodextrins
4. Synthetic Porous Organic Polymers (POPs) for CO2 Capture
4.1. Hyper-Crosslinked Polymers (HCPs)
4.2. Covalent Organic Frameworks (COFs)
4.3. Conjugated Microporous Polymers (CMPs)
POPs | Synthetic Process | SBET a | Pore Size b | Vtot c | CO2 Capture Capacity d | CO2/N2 Selectivity e | Qst f | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
273 K | 298 K | 273 K | 298 K | |||||||
PIM-1 | One-step condensation in presence of K2CO3 | 970 | <2, 2–50 | 0.70 | - | 1.66 | - | 19.3 | 20.8 | [58] |
hPIM-1 | Hydrolyzation of PIM-1 using NaOH | 780 | <2, 2–50 | 0.49 | - | 1.73 | - | 11.7 | 32.8 | [58] |
HCP-MAAM-1 | Radical initiated bulk copolymerization | 298 | 2–40 | 0.47 | 1.56 | 0.92 | 45–86 | 38–48 | 28–35 | [59] |
HCP-MAAM-2 | Radical initiated bulk copolymerization | 142 | 2–40 | 0.87 | 1.45 | 0.85 | 50–99 | 38–63 | 28–35 | [59] |
HCP-MAAM-3 | Radical initiated bulk copolymerization | 83 | 2–40 | 0.24 | 1.28 | 0.79 | 52–104 | 45–72 | 28–35 | [59] |
BAHCP-7 | Friedel-Crafts alkylation polymerization | 1101 | 1.7 | 1.15 | 3.03 | 1.96 | 35 | - | 26–28 | [60] |
KFUPM-1 | Acid catalyzed polycondensation | 305 | - | - | 1.52 | 1.04 | - | 141 | 34 | [61] |
KFUPM-2 | Friedel−Crafts alkylation polymerization | 352 | - | 0.21 | 1.75 | 1.04 | - | 51 | 34 | [62] |
y-POP | Sonogashira coupling | 226 | 0.74, 1.2, 34 | - | 1.34 | - | 20 | - | 29 | [63] |
y-POP-A1 | Amine modification of y-POP | 145 | - | - | 1.50 | - | 239 | - | 46.8 | [63] |
PDV | Radical polymerzation | 364 | 1–2 | 0.20 | 0.66 | 0.25 | 31.3 | - | 36.9 | [64] |
PDV-pc-1 | Friedel−Crafts reaction of PDV | 686 | 1–2 | 0.37 | 1.45 | 0.59 | 16.4 | - | 34.3 | [64] |
PDV-pc-2 | Friedel−Crafts reaction of PDV | 635 | 1–2 | 0.33 | 1.95 | 0.80 | 46.8 | - | 39.7 | [64] |
HMP-TAPA | Polymerization via nucleophilic substitution reaction | 424 | 0.7–1.2, 2–4 | - | 2.42 | - | 26.27 | 30.79 | 32.8 | [65] |
HCP1 | Scholl coupling | 534.5 | - | 0.32 | 2.64 | 1.57 | 23.6 | - | 46.7 | [66] |
HCP2 | Scholl coupling | 215.7 | - | 0.11 | 2.38 | 1.51 | 30.2 | - | 28.0 | [66] |
HCP3 | Scholl coupling | 199.9 | - | 0.12 | 2.47 | 1.46 | 26.7 | - | 36.7 | [66] |
HCP4 | Friedel−Crafts alkylation polymerization | 10.8 | - | 0.023 | 1.05 | 0.72 | 8.6 | - | 26.2 | [66] |
HCP5 | Friedel−Crafts alkylation polymerization | 34.8 | - | 0.065 | 1.52 | 0.72 | 15.4 | - | 39.8 | [66] |
HCP6 | Friedel−Crafts alkylation polymerization | 30.3 | - | 0.061 | 0.90 | 0.42 | 7.0 | - | 33.0 | [66] |
TPE-CPOP1 | Friedel-Crafts polymerization | 489 | 1.49, 1.82 | 0.269 | 0.99 | 0.89 | - | - | - | [67] |
TPE-CPOP2 | Friedel-Crafts polymerization | 146 | 2.57 | 0.1 | 1.26 | 1.15 | - | - | - | [67] |
TPE-CPOP1-800 | Carbonization and KOH activation of TPE-CPOP1 | 1177 | 1.04, 2.99 | 0.48 | 3.19 | 1.74 | - | - | - | [67] |
TPE-CPOP2-800 | Carbonization and KOH activation of TPE-CPOP2 | 1165 | 1.02, 2.29 | 0.62 | 2.93 | 1.72 | - | - | - | [67] |
P0 | Friedel-Crafts polymerization | 1062 | 5.65 | 0.69 | 3.79 | - | - | 18.28 | 24–32 | [68] |
P1 | Friedel-Crafts polymerization | 447 | 1.91 | 0.21 | 4.24 | - | - | 20.97 | 24–32 | [68] |
P2 | Condensation polymerization using base | 242 | 1.94 | 0.12 | 3.02 | - | - | 34.52 | 24–32 | [68] |
PIM-TPB | Friedel−Crafts polymerization | 2540 | 0.35, 0.56, 0.86 | 1.300 | 5.00 | 2.57 | - | 14.1 | 25.2 | [69] |
PIM-TPB-NO2 | -NO2 functionalization of PIM-TPB using HNO3 | 950 | 0.35, 0.56, 0.86 | 0.553 | 5.13 | 3.11 | - | 24.7 | 32.1 | [69] |
PIM-TPB-NH2 | -NH2 functionalization by Na2S2O4 treatment of PIM-TPB-NO2 | 710 | 0.35, 0.56, 0.86 | 0.333 | 4.45 | 2.98 | - | 26.1 | 31.7 | [69] |
PIM-TPB-HSO3 | -SO3H functionalization of PIM-TPB using H2SO4 | 1585 | 0.35, 0.56, 0.86 | 0.852 | 6.77 | 4.07 | - | 17.9 | 29.0 | [69] |
man-Azo-P1 | Diazotization of aromatic diamines followed by coupling with aromatic alcohol | 290 | - | 0.33 | 1.43 | - | 80 | - | 40 | [70] |
man-Azo-P2 | Diazotization of aromatic diamines followed by coupling with aromatic alcohol | 78 | - | 0.15 | 0.89 | - | 110 | - | 23 | [70] |
TPE-COF-I | Acid catalysed condensation | 1535 | - | 1.65 | 3.06 | 1.69 | - | - | - | [71] |
TPE-COF-II | Acid catalysed condensation | 2168 | - | 2.14 | 5.30 | 2.70 | - | - | - | [71] |
Co(II)@TA-TF COF | Solvothermal reaction | 1076 | 1.6 | - | - | 3.84 | - | - | - | [72] |
COF-609-Im | Acid catalysed condensation | 724 | - | - | 1.5 | - | - | - | - | [73] |
COF-609 | aza-Diels−Alder cycloaddition of COF-609-Im followed by amination | - | - | - | 0.076 | - | - | - | - | [73] |
CMP-LS1 | Suzuki coupling | 493 | 0.4–1.4 | 0.32 | 1.38 | 0.76 | 23.2 | - | 30.2 | [75] |
CMP-LS2 | Suzuki coupling | 1576 | 0.4–1.4 | 1.06 | 3.88 | 2.1 | 27.9 | - | 31.6 | [75] |
CMP-LS3 | Sonogashira-Hagihara coupling | 643 | 0.4–1.4 | 0.37 | 1.88 | 1.07 | 19.8 | - | 30.4 | [75] |
LKK-CMP-1 | Oxidative homocoupling | 467 | 0.59 | 0.371 | 2.22 | 1.38 | - | 44.2 | 35 | [76] |
Azo-Cz-CMP | One-pot reductive reaction using NABH4 | 315 | 0.79 | - | 2.13 | 0.91 | - | - | 32.08 | [77] |
Azo-Tz-CMP | One-pot reductive reaction using NABH4 | 225 | 1.18 | - | 1.36 | 0.64 | - | - | 18.36 | [77] |
TrzPOP-1 | Polycondensation | 995 | 1.7 | - | 6.19 | 3.53 | 108.4 | 42.1 | 29 | [78] |
TrzPOP-2 | Polycondensation | 868 | 1.5 | - | 7.51 | 4.52 | 140.6 | 75.7 | 34 | [78] |
TrzPOP-3 | Polycondensation | 772 | 1.4 | - | 8.54 | 5.09 | 167.4 | 94.5 | 37 | [78] |
NT-POP-5 | Suzuki cross-coupling | 8 | - | - | 0.78 | - | - | - | 25.4–19.4 | [79] |
NT-POP@800-4 | Pyrolysis of NT-POP-1-6 at 800 oC | 736 | - | 0.463 | 3.96 | 3.25 | 36.9 | - | 25.4–19.4 | [79] |
CTF1 | ZnCl2 catalyzed ionothermal reaction | 1654 | - | 1.06 | 5.23 | 3.32 | - | 11 | 34.0 | [80] |
CTF4 | ZnCl2 catalyzed ionothermal reaction | 784 | - | 0.41 | 4.39 | 3.83 | - | 46 | 21.5 | [80] |
CTF-DCE | ZnCl2 catalyzed ionothermal reaction | 1355 | 0.6, 1.2, 2–4 | 0.93 | 4.34 | 3.59 | 54 | - | 24.9 | [81] |
CTF-PF-4 | ZnCl2 catalyzed ionothermal reaction | 889 | 1.7–1.9 | 0.58 | 2.0 | 1.27 | - | - | >33 | [82] |
ICTF-Cl | ZnCl2 catalyzed ionothermal reaction | 751 | - | 0.458 (approx.) | 2.36 | 1.41 | 119.1 | 68.74 | - | [83] |
ICTF-SCN | ZnCl2 catalyzed ionothermal reaction | 1000 (approx.) | - | 0.458 (approx.) | 2.48 | 1.40 | 39.28 | 24.82 | - | [83] |
CTF-N4 | ZnCl2-mediated cyclotrimerization | 701 | - | 0.31 | 3.4 | 2.2 | 45 | - | 44 | [84] |
CTF-N6 | ZnCl2-mediated cyclotrimerization at high temperature | 1236 | - | 0.51 | 5.0 | 3.4 | 36 | - | 26 | [84] |
CTF-hex4 | ZnCl2-mediated ionothermal reaction | 609 | - | 0.31 | 3.4 | - | - | - | 29 | [85] |
CTF-hex6 | ZnCl2-mediated ionothermal reaction | 1728 | - | 0.87 | 3.1 | - | - | - | 37 | [85] |
An-CTF-20-500 | ZnCl2-mediated ionothermal reaction | 700 | 1.06, 1.66 | - | 5.25 | 2.69 | - | - | - | [86] |
4.4. Covalent Triazine-Based Frameworks (CTFs)
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Raupach, M.R.; Marland, G.; Ciais, P.; Quẻrẻ, C.L.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and Regional Drivers of Accelerating CO2 Emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Goeppert, A.; Czaun, M.; Prakash, G.K.S.; Olah, G.A. Air as the Renewable Carbon Source of the Future: An Overview of CO2 Capture from the Atmosphere. Energy Environ. Sci. 2012, 5, 7833–7853. [Google Scholar] [CrossRef]
- Qaroush, A.K.; Alshamaly, H.S.; Alazzeh, S.S.; Abeskhron, R.H.; Assaf, K.I.; Eftaiha, A.F. Inedible Saccharides: A Platform for CO2 Capturing. Chem. Sci. 2018, 9, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zou, R.; Zhao, Y. Covalent Organic Frameworks for CO2 Capture. Adv. Mater. 2016, 28, 2855–2873. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, M.; Yuan, D. Carbon Dioxide Capture in Amorphous Porous Organic Polymers. J. Mater. Chem. A 2017, 5, 1334–1347. [Google Scholar] [CrossRef]
- Bhanja, P.; Modak, A.; Bhaumik, A. Porous Organic Polymers for CO2 Storage and Conversion Reactions. ChemCatChem 2019, 11, 244–257. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations: A Review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; et al. Porous Organic Polymers for Post-Combustion Carbon Capture. Adv. Mater. 2017, 29, 1700229. [Google Scholar] [CrossRef] [PubMed]
- Porta, R.; Sabbah, M.; Di Pierro, P. Biopolymers as Food Packaging Materials. Int. J. Mol. Sci. 2020, 21, 4942. [Google Scholar] [CrossRef]
- Inostroza-Brito, K.E.; Collin, E.C.; Majkowska, A.; Elsharkawy, S.; Rice, A.; Hernández, A.E.R.; Xiao, X.; Rodríguez-Cabello, J.C.; Mata, A. Cross-Linking of a Biopolymer-Peptide Co-assembling System. Acta Biomater. 2017, 58, 80–89. [Google Scholar] [CrossRef]
- Ma, J.; Sahai, Y. Chitosan Biopolymer for Fuel Cell Applications. Carbohydr. Polym. 2013, 92, 955–975. [Google Scholar] [CrossRef]
- Ghosh, M.; Majkowska, A.; Mirsa, R.; Bera, S.; Rodríguez-Cabello, J.C.; Mata, A.; Adler-Abramovich, L. Disordered Protein Stabilization by Co-Assembly of Short Peptides Enables Formation of Robust Membranes. ACS Appl. Mater. Interfaces 2022, 14, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shaidani, S.; Theodossiou, S.K.; Hartzell, E.J.; Kaplan, D.L. Localized, on-Demand, Sustained Drug Delivery from Biopolymer-Based Materials. Expert Opin. Drug Deliv. 2022, 19, 1317–1335. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Halperin-Sternfeld, M.; Grinberg, I.; Adler-Abramovich, L. Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration. Nanomaterials 2019, 9, 497. [Google Scholar] [CrossRef]
- Souza, M.A.D.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.D.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Ghosh, M.; Adler-Abramovich, L.; Das, D. The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics 2021, 13, 1602. [Google Scholar] [CrossRef]
- Salave, S.; Rana, D.; Sharma, A.; Bharathi, K.; Gupta, R.; Khode, S.; Benival, D.; Kommineni, N. Polysaccharide Based Implantable Drug Delivery: Development Strategies, Regulatory Requirements, and Future Perspectives. Polysaccharides 2022, 3, 625–654. [Google Scholar] [CrossRef]
- Fernandes, M.; Souto, A.P.; Dourado, F.; Gama, M. Application of Bacterial Cellulose in the Textile and Shoe Industry: Development of Biocomposites. Polysaccharides 2021, 2, 566–581. [Google Scholar] [CrossRef]
- Marques, C.S.; Silva, R.R.A.; Arruda, T.R.; Ferreira, A.L.V.; Oliveira, T.V.; Moraes, A.R.F.; Dias, M.V.; Vanetti, M.C.D.; Soares, N.D.F.F. Development and Investigation of Zein and Cellulose Acetate Polymer Blends Incorporated with Garlic Essential Oil and β-Cyclodextrin for Potential Food Packaging Application. Polysaccharides 2022, 3, 277–291. [Google Scholar] [CrossRef]
- Field, J.L.; Richard, T.L.; Smithwick, E.A.H.; Cai, H.; Laser, M.S.; LeBauer, D.S.; Long, S.P.; Paustian, K.; Qin, Z.; Sheehan, J.J.; et al. Robust Paths to Net Greenhouse Gas Mitigation and Negative Emissions Via Advanced Biofuels. Proc. Natl. Acad. Sci. USA 2020, 117, 21968–21977. [Google Scholar] [CrossRef]
- Xu, C.; Strømme, M. Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture. Nanomaterials 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Park, S.J. A Role of Steam Activation on CO2 Capture and Separation of Narrow Microporous Carbons Produced from Cellulose Fibers. Energy 2015, 91, 142–150. [Google Scholar] [CrossRef]
- Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable Hierarchical Porous Carbon Aerogel from Cellulose for High-Performance Supercapacitor and CO2 Capture. Ind. Crops Prod. 2016, 87, 229–235. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Sustainable Porous Carbons with A Superior Performance for CO2 Capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef]
- Xu, C.; Ruan, C.Q.; Li, Y.; Lindh, J.; Strømme, M. High-Performance Activated Carbons Synthesized from Nanocellulose for CO2 Capture and Extremely Selective Removal of Volatile Organic Compounds. Adv. Sustain. Syst. 2018, 2, 1700147. [Google Scholar] [CrossRef]
- Ho, N.A.D.; Leo, C.P. A Review on the Emerging Applications of Cellulose, Cellulose Derivatives and Nanocellulose in Carbon Capture. Environ. Res. 2021, 197, 111100. [Google Scholar] [CrossRef]
- Kamran, U.; Park, S.J. Acetic Acid-Mediated Cellulose-Based Carbons: Influence of Activation Conditions on Textural Features and Carbon Dioxide Uptakes. J. Colloid Interface Sci. 2021, 594, 745–758. [Google Scholar] [CrossRef]
- Wang, C.; Okubayashi, S. Polyethyleneimine-Crosslinked Cellulose Aerogel for Combustion CO2 Capture. Carbohydr. Polym. 2019, 225, 115248. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-Based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2020, 255, 117489. [Google Scholar] [CrossRef]
- Sepahvand, S.; Bahmani, M.; Ashori, A.; Pirayesh, H.; Yu, Q.; Dafchahi, M.N. Preparation and Characterization of Air Nanofilters Based on Cellulose Nanofibers. Int. J. Biol. Macromol. 2021, 182, 1392–1398. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Wang, H.; Yang, Y.; Wang, C.; Sun, Q.; Shen, X.; Li, Y. Epoxy-Functionalized Polyethyleneimine Modified Epichlorohydrin-Cross-Linked Cellulose Aerogel as Adsorbents for Carbon Dioxide Capture. Carbohydr. Polym. 2023, 302, 120389. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Gay, J.S.; Ligi, S.; Baschetti, M.G. Nanocellulose-Based Membranes for CO2 Capture. J. Membr. Sci. 2017, 522, 216–225. [Google Scholar] [CrossRef]
- Venturi, D.; Grupkovic, D.; Sisti, L.; Baschetti, M.G. Effect of Humidity and Nanocellulose Content on Polyvinylamine-Nanocellulose Hybrid Membranes for CO2 Capture. J. Membr. Sci. 2018, 548, 263–274. [Google Scholar] [CrossRef]
- Venturi, D.; Chrysanthou, A.; Dhuiège, B.; Missoum, K.; Baschetti, M.G. Arginine/Nanocellulose Membranes for Carbon Capture Applications. Nanomaterials 2019, 9, 877. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Farrukh, S.; Hussain, A.; Ayoub, M. Carbon Capture from Natural Gas Using Multi-Walled CNTs Based Mixed Matrix Membranes. Environ. Technol. 2017, 40, 843–854. [Google Scholar] [CrossRef]
- Mubashir, M.; Dumée, L.F.; Fong, Y.Y.; Jusoh, N.; Lukose, J.; Chai, W.S.; Show, P.L. Cellulose Acetate-Based Membranes by Interfacial Engineering and Integration Of ZIF-62 Glass Nanoparticles for CO2 Separation. J. Hazard Mater. 2021, 415, 125639. [Google Scholar] [CrossRef]
- Rehman, A.; Jahan, Z.; Sher, F.; Noor, T.; Niazi, M.B.K.; Akram, M.A.; Sher, E.K. Cellulose Acetate Based Sustainable Nanostructured Membranes for Environmental Remediation. Chemosphere 2022, 307, 135736. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Zhou, Q. Strong Foam-Like Composites from Highly Mesoporous Wood and Metal-Organic Frameworks for Efficient CO2 Capture. ACS Appl. Mater. Interfaces 2021, 13, 29949–29959. [Google Scholar] [CrossRef]
- Li, A.; Lin, R.; Lin, C.; He, B.; Zheng, T.; Lu, L.; Cao, Y. An Environment-Friendly and Multi-Functional Absorbent from Chitosan for Organic Pollutants and Heavy Metal Ion. Carbohydr. Polym. 2016, 148, 272–280. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Zhang, Z.; Li, L.; Tian, Y.; Lu, Y.; Qiao, Y.; Li, J.; Wen, L. Improving Low-Pressure CO2 Capture Performance of N-Doped Active Carbons by Adjusting Flow Rate of Protective Gas During Alkali Activation. Carbon 2017, 114, 496–503. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Gao, M.; Huang, L.; Li, L.; Liu, S.; Xie, C.; Zhang, Y.; Yu, S. N-Doped Porous Carbon from Different Nitrogen Sources for High-Performance Supercapacitors and CO2 Adsorption. J. Alloys Compd. 2019, 786, 826–838. [Google Scholar] [CrossRef]
- Lourenço, M.A.O.; Nunes, C.; Gomes, J.R.B.; Pires, J.; Pinto, M.L.; Ferreira, P. Pyrolyzed Chitosan-Based Materials for CO2/CH4 Separation. Chem. Eng. J. 2019, 362, 364–374. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Chen, W.; Chen, Q.; Jiao, H.; Liu, L.; Wang, X.; Deng, X. Molten Salt Template Synthesis of Hierarchical Porous Nitrogen-Containing Activated Carbon Derived from Chitosan for CO2 Capture. ACS Omega 2020, 5, 23460–23467. [Google Scholar] [CrossRef] [PubMed]
- Chagas, J.A.O.; Crispim, G.O.; Pinto, B.P.; Gil, R.A.S.S.; Mota, C.J.A. Synthesis, Characterization, and CO2 Uptake of Adsorbents Prepared by Hydrothermal Carbonization of Chitosan. ACS Omega 2020, 5, 29520–29529. [Google Scholar] [CrossRef] [PubMed]
- Kamran, U.; Park, S.J. Tuning Ratios of KOH and NaOH on Acetic Acid-Mediated Chitosan-Based Porous Carbons for Improving Their Textural Features and CO2 Uptakes. J. CO₂ Util. 2020, 40, 101212. [Google Scholar] [CrossRef]
- Islam, M.A.; Tan, Y.L.; Islam, M.A.; Romić, M.; Hameed, B.H. Chitosan–Bleaching Earth Clay Composite as An Efficient Adsorbent for Carbon Dioxide Adsorption: Process Optimization. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 9–15. [Google Scholar] [CrossRef]
- Zhao, B.; Borghei, M.; Zou, T.; Wang, L.; Johansson, L.S.; Majoinen, J.; Sipponen, M.H.; Österberg, M.; Mattos, B.D.; Rojas, O.J. Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano 2021, 15, 6774–6786. [Google Scholar] [CrossRef]
- Shao, L.; Liu, N.; Wang, L.; Sang, Y.; Wan, H.; Zhan, P.; Zhang, L.; Huang, J.; Chen, J. Facile Preparation of Oxygen-Rich Porous Polymer Microspheres from Lignin-Derived Phenols for Selective CO2 Adsorption and Iodine Vapor Capture. Chemosphere 2022, 288, 132499. [Google Scholar] [CrossRef]
- Liu, N.; Shao, L.; Wang, C.; Sun, F.; Wu, Z.; Zhan, P.; Zhang, L.; Wan, H. Preparation of Lignin Modified Hyper-Cross-Linked Nanoporous Resins and Their Efficient Adsorption for P-Nitrophenol in Aqueous Solution and CO2 Capture. Int. J. Biol. Macromol. 2022, 221, 25–37. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Liu, C.; Cao, S.; Zhou, L.; Zhang, H.; Zhao, Y.; Han, J. Cyclodextrin-Based Aerogels: A Review of Nanomaterials Systems and Applications. ACS Appl. Nano Mater. 2022, 5, 13921–13939. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Zhang, Z.; Yang, Q.; Yang, Y.; Su, B.; Bao, Z.; Ren, Q. Inverse Adsorption Separation of CO2/C2H2 Mixture in Cyclodextrin-Based Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 11, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Bedane, A.H.; Pan, Y.; Shirani, B.; Xiao, H.; Eić, M. Adsorption Characteristics of Carbon Dioxide Gas on a Solid Acid Derivative of β-Cyclodextrin. Energy Fuels 2017, 31, 4186–4192. [Google Scholar] [CrossRef]
- Hamedi, A.; Anceschi, A.; Trotta, F.; Hasanzadeh, M.; Caldera, F. Rapid Temperature-Assisted Synthesis of Nanoporous γ-Cyclodextrin-Based Metal–Organic Framework for Selective CO2 Adsorption. J. Incl. Phenom. Macrocycl. Chem. 2021, 99, 245–253. [Google Scholar] [CrossRef]
- Du, Y.; Geng, Y.; Guo, T.; Zhang, R.; Zhang, Y.; Wang, X.; Han, Z. Thermodynamic Characteristics of CO2 Adsorption on Β-Cyclodextrin Based Porous Materials: Equilibrium Capacity Function with Four Variables. Case Stud. Therm. Eng. 2022, 39, 102426. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, R.; Wang, X.; Kong, L.; Xu, J.; Xiao, H.; Bedane, A.H. Porous Structure of β-Cyclodextrin for CO2 Capture: Structural Remodeling by Thermal Activation. Molecules 2022, 27, 7375. [Google Scholar] [CrossRef]
- Gao, H.; Li, Q.; Ren, S. Progress on CO2 Capture by Porous Organic Polymers. Curr. Opin. Green Sustain. Chem. 2019, 16, 33–38. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Wang, X.; Zhai, L.; Zhao, D. Solution-Reprocessable Microporous Polymeric Adsorbents for Carbon Dioxide Capture. AIChE J. 2018, 64, 3376–3389. [Google Scholar] [CrossRef]
- Fayemiwo, K.A.; Vladisavljević, G.T.; Nabavi, S.A.; Benyahia, B.; Hanak, D.P.; Loponov, K.N.; Manović, V. Nitrogen-Rich Hyper-Crosslinked Polymers for Low-Pressure CO2 Capture. Chem. Eng. J. 2018, 334, 2004–2013. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Jia, X.; Fan, X.; Zhang, B.; Zhang, A.; Zhang, Q. Hydroxyl-Based Hypercrosslinked Microporous Polymers and Their Excellent Performance for CO2 Capture. Ind. Eng. Chem. Res. 2018, 57, 17259–17265. [Google Scholar] [CrossRef]
- Abdelnaby, M.M.; Alloush, A.M.; Qasem, N.A.A.; Al-Maythalony, B.A.; Mansour, R.B.; Cordova, K.E.; Al Hamouz, O.C.S. Carbon dioxide Capture in The Presence of Water by An Amine-Based Crosslinked Porous Polymer. J. Mater. Chem. A 2018, 6, 6455–6462. [Google Scholar] [CrossRef]
- Abdelnaby, M.M.; Qasem, N.A.A.; Al-Maythalony, B.A.; Cordova, K.E.; Al Hamouz, O.C.S. A Microporous Organic Copolymer for Selective CO2 Capture Under Humid Conditions. ACS Sus. Chem. Eng. 2019, 7, 13941–13948. [Google Scholar] [CrossRef]
- Kong, X.; Li, S.; Strømme, M.; Xu, C. Synthesis of Porous Organic Polymers with Tunable Amine Loadings for CO2 Capture: Balanced Physisorption and Chemisorption. Nanomaterials 2019, 9, 1020. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Shao, L.; Huang, J. Carbonyl Functionalized Hyper-Cross-Linked Polymers for CO2 Capture. J. Polym. Res. 2020, 27, 188. [Google Scholar] [CrossRef]
- Sharma, N.; Ugale, B.; Kumar, S.; Kailasam, K. Metal-Free Heptazine-Based Porous Polymeric Network as Highly Efficient Catalyst for CO2 Capture and Conversion. Front. Chem. 2021, 9, 737511. [Google Scholar] [CrossRef]
- Shao, L.; Sang, Y.; Liu, N.; Wei, Q.; Wang, F.; Zhan, P.; Luo, W.; Huang, J.; Chen, J. One-step synthesis of N-containing Hyper-Cross-Linked Polymers by Two Crosslinking Strategies and Their CO2 Adsorption and Iodine Vapor Capture. Sep. Purif. Technol. 2021, 262, 118352. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Ahmed, M.M.M.; Du, W.-T.; Kuo, S.-W. Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO2 Capture and Supercapacitor. Molecules 2021, 26, 738. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhan, Z.; Yang, Y.; Liu, M.; Huang, Q.; Ke, B.T.X.; Wu, C. Amine or Azo Functionalized Hypercrosslinked Polymers for Highly Efficient CO2 Capture and Selective CO2 Capture. Mater. Today 2021, 27, 102338. [Google Scholar] [CrossRef]
- Zhou, H.; Rayer, C.; Antonangelo, A.R.; Hawkins, N.; Carta, M. Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO2 Adsorption and Selectivity Over N2 and CH4. ACS Appl. Mater. Interfaces 2022, 14, 20997–21006. [Google Scholar] [CrossRef]
- Abdelnaby, M.M.; Saleh, T.A.; Zeama, M.; Abdalla, M.A.; Ahmed, H.M.; Habib, M.A. Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal. ACS Omega 2022, 7, 14535–14543. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.; Ning, G.-H.; Xu, H.-S.; Liu, C.; Tian, B.; Tang, W.; Loh, K.P. Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chem. Mater. 2018, 30, 1762–1768. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Zuo, K.; Li, Z.; Wang, Y.; Hu, H.; Zeng, C.; Xu, H.; Wang, B.; Gao, Y. Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 2021, 11, 1133. [Google Scholar] [CrossRef]
- Lyu, H.; Li, H.; Hanikel, N.; Wang, K.; Yaghi, O.M. Covalent Organic Frameworks for Carbon Dioxide Capture from Air. J. Am. Chem. Soc. 2022, 144, 12989–12995. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Zhang, F.; Zhuang, X.; Zeng, Z.; Wei, J. New Nitrogen-Rich Azo-Bridged Porphyrin-Conjugated Microporous Networks for High Performance of Gas Capture and Storage. RSC Adv. 2016, 6, 30048–30055. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Yu, Y.; Du, J.; Cui, Y.; Songa, X.; Liang, Z. Conjugated Microporous Polymers Based on Biphenylene for CO2 Adsorption and Luminescent Detection of Nitroaromatic Compounds. New J. Chem. 2018, 42, 9482–9487. [Google Scholar] [CrossRef]
- Ren, S.-B.; Li, P.-X.; Stephenson, A.; Chen, L.; Briggs, M.E.; Clowes, R.; Alahmed, A.; Li, K.-K.; Jia, W.-P.; Han, D.-M. A 1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO2 Capture. Ind. Eng. Chem. Res. 2018, 57, 9254–9260. [Google Scholar] [CrossRef]
- Saber, A.F.; Chen, K.-Y.; EL-Mahdy, A.F.M.; Kuo, S.-W. Designed Azo-Linked Conjugated Microporous Polymers for CO2 Uptake and Removal Applications. J. Polym. Res. 2021, 28, 430. [Google Scholar] [CrossRef]
- Das, S.K.; Bhanja, P.; Kundu, S.K.; Mondal, S.; Bhaumik, A. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO2 Uptake and CO2/N2 Selectivity: Experimental and Computational Studies. ACS Appl. Mater. Interfaces 2018, 10, 23813–23824. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Li, G.; Wang, J.; Xu, Y.; Chang, L. Template-Free Synthesis of Porous Carbon from Triazine Based Polymers and Their Use in Iodine Adsorption and CO2 Capture. Sci. Rep. 2018, 8, 1867. [Google Scholar] [CrossRef]
- Tuci, G.; Iemhoff, A.; Ba, H.; Luconi, L.; Rossin, A.; Papaefthimiou, V.; Palkovits, R.; Artz, J.; Pham-Huu, C.; Giambastiani, G. Playing with Covalent Triazine Framework Tiles for Improved CO2 Adsorption Properties and Catalytic Performance. Beilstein J. Nanotechnol. 2019, 10, 1217–1227. [Google Scholar] [CrossRef]
- Dang, Q.-Q.; Liu, C.-Y.; Wang, X.-M.; Zhang, X.-M. Novel Covalent Triazine Framework for High Performance CO2 Capture and Alkyne Carboxylation Reaction. ACS Appl. Mater. Interfaces 2018, 10, 27972–27978. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhu, Y.; Xie, W.; Zhang, S.; Yao, C.; Xu, Y. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO2 And Iodine Capture. Chem. Asian J. 2019, 14, 3259–3263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lin, W.; Li, Q.; Hu, Y.; Guo, S.; Wang, C.; Yan, F. Bipyridinium-Based Ionic Covalent Triazine Frameworks for CO2, SO2 and NO Capture. ACS Appl. Mater. Interfaces 2020, 12, 8614–8621. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liang, Z.; Liu, B.; Chen, H.; Wang, X.; Li, H. Phenylamino-, Phenoxy-, and Benzenesulfenyl-Linked Covalent Triazine Frameworks for CO2 Capture. ACS Appl. Nano Mater. 2020, 3, 2889–2898. [Google Scholar] [CrossRef]
- Wessely, I.D.; Schade, A.M.; Dey, S.; Bhunia, A.; Nuhnen, A.; Janiak, C.; Bräse, S. Covalent Triazine Frameworks Based on The First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials 2021, 14, 3214. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Sharma, S.U.; Liu, N.-Y.; Mansoure, T.H.; Samy, M.M.; Chaganti, S.V.; Chang, Y.-L.; Lee, J.-T.; Kuo, S.-W. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Int. J. Mol. Sci. 2022, 23, 3174. [Google Scholar] [CrossRef]
Material Type and Composition | BET Surface Area (m2 g−1) | Pore Size (nm)/Total Pore Volume (cm3 g−1) | Mechanism of Adsorption | CO2 Capture Capacity (mmol g−1) | Special Features | Ref |
---|---|---|---|---|---|---|
Porous carbons derived from commercial cellulose fibres | 540 and 1018 | <0.8 nm–/0.234 and 0.429 | for pre-activated samples for steam-activated samples | 3.776 at 298 K | CO2-over-N2 adsorption selectivity | [22] |
Carbonized and activated cellulose from cotton linter | 1364 | 1.42 | physisorption | 3.42 | - | [23] |
Chemically activated cellulose | 2200–2400 | 1.1 | physisorption | 4.8 | CO2-over-N2 adsorption selectivity | [24] |
Algae extracted nanofibrous chemically modified cellulose activated in CO2 | 832–1241 | 0.24–0.29 | physisorption | 2.29 at 0.15 bar, 5.52 at 1 bar; 273 K | CO2-over-N2 adsorption selectivity | [25] |
Silica/Cellulose Nanofibril aerogel functionalized with 3-aminopropyl triethoxysilane | 11 | 0.05 | Chemisorption via reaction between amine group and CO2 | 2.2 at humid condition | high chemisorption of CO2 with reduced surface area | [26] |
Highly porous cellulose by hydrothermal method and chemical activation using acetic acid as an additive. | 1260–3019 | 0.21–1.13 | physisorption | 6.75 at 273 K, 1 bar and 3.96 at 298 K, 1 bar | CO2 selectivity | [27] |
polyethyleneimine-crosslinked cellulose (PCC) aerogel sorbent | 234.2 | - | Surface diffusion and intra-particle diffusion mechanism | 2.31 at 25 °C under pure dry CO2 atm | Adsorption-desorption recyclability | [28] |
Cellulose nanofiber (CNF) surface was functionalized using chitosan (CS), poly [β-(1, 4)-2amino-2-deoxy-Dglucose] | ~360 | ~4 nm | Physisorption | 4.8 | Increasing the concentration of modified CNFs increases the adsorption rate of CO2 | [30] |
Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel | 97.5–149.5 | - | Chemisorption | 6.45 | Material showed preferable rigidity and carrying capacity | [31] |
Material Type and Composition | BET Surface Area (m2 g−1) | Pore Size (nm)/Total Pore Volume (cm3 g−1) | Mechanism of Adsorption | CO2 Capture Capacity (mmol g−1) | Special Features | Ref |
---|---|---|---|---|---|---|
N-doped Atcivated carbon from chitosan char by KOH activation | 907 | 0.39 | Physisorption | 1.86 | High CO2/N2 selectivity and excellent recyclability | [40] |
N-doped carbonized chitosan | 849 | 0.5–1.0 nm, 1.0–1.5 nm and 1.5–2.5 nm with maximum pore volume of 0.68 | Physisorption | 3.2 | Can be used as an electrode material and adsorbent | [41] |
Pyrolyzed chitosan- and chitosan-periodic mesoporous organosilica (PMO)-based porous materials | 376 | ~2 nm, 0.346 | Physisorption | 1.9 at 500 kPa | Best selectivity for CO2/CH4 separation at 1.5% (m/v) of chitosan solution dried under supercritical CO2 | [42] |
N containing activated carbons (N-ACs) with LiCl-ZnCl2 molten salt as a template derived from cheap chitosan by carbonization. | 2025 | 1.15 | Physisorption | 7.9 mmol g−1 at 0 °C/25 °C, 1 bar | Selectivity for CO2/N2 separation, excellent recyclability | [43] |
Hydrothermal carbonized (HTC) of chitosan | 2 | - | Adsorption by the acid−base reaction between the CO2 molecule and the basic sites of the materials, associated with the presence of nitrogen atoms | 0.45 | - | [44] |
Acetic acid-mediated chitosan-based highly porous carbon adsorbents | 4168 | 1.386 | Physisorption | 8.36 | CO2 selectivity over N2 | [45] |
Chitosan-Bleaching earth | 71.26 | 0.19 | Physisorption | 7.65 | Recyclable | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.K.; Ghosh, M. Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers. Polysaccharides 2023, 4, 156-175. https://doi.org/10.3390/polysaccharides4020012
Ghosh SK, Ghosh M. Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers. Polysaccharides. 2023; 4(2):156-175. https://doi.org/10.3390/polysaccharides4020012
Chicago/Turabian StyleGhosh, Sudip Kumar, and Moumita Ghosh. 2023. "Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers" Polysaccharides 4, no. 2: 156-175. https://doi.org/10.3390/polysaccharides4020012
APA StyleGhosh, S. K., & Ghosh, M. (2023). Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers. Polysaccharides, 4(2), 156-175. https://doi.org/10.3390/polysaccharides4020012