Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan
Abstract
:1. Introduction
2. Material and Methods
2.1. Sugarcane Bagasse and Sugarcane for Separating the Fractions
2.2. Delignification Strategies
2.3. Xylan Solubilization
2.4. Chemical Characterization of Xylan
2.5. Xylan Solubility and Solution Conductivity
2.6. Xylan as a Substrate for Xylanase Enzymatic Activity
2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Partial Delignification of the Sugarcane Biomass Previously to the Xylan Solubilization
3.2. Partial Delignification with Sodium Sulfite
3.3. Delignification with Sodium Chlorite
3.4. Delignification with Hydrogen Peroxide
3.5. Delignification of the Extracted Xylan
3.6. Xylanase Enzymatic Activity Using the Solubilized Xylan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melati, R.B.; Shimizu, F.L.; Oliveira, G.; Pagnocca, F.C.; de Souza, W.; Sant’anna, C.; Brienzo, M. Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. BioEnergy Res. 2018, 12, 1–20. [Google Scholar] [CrossRef]
- Shimizu, F.L.; de Azevedo, G.O.; Coelho, L.F.; Pagnocca, F.C.; Brienzo, M. Minimum Lignin and Xylan Removal to Improve Cellulose Accessibility. BioEnergy Res. 2020, 13, 775–785. [Google Scholar] [CrossRef]
- Melati, R.B.; Schmatz, A.A.; Brienzo, M.; Contiero, J.; Pagnocca, F.C. Sugarcane Bagasse: Production, Composition, Properties, and Feedstock Potential. In Sugarcane: Production Systems, Uses and Economic Importance, 1st ed.; Nova, M.R., Ed.; Science Publishers: New York, NY, USA, 2017; Volume 1, pp. 1–38. [Google Scholar]
- Sant’Anna, C.; Souza, W.; Brienzo, M. The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse. In Sugarcane: Production, Consumption and Agricultural Management Systems; Webb, E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 1–34. [Google Scholar]
- Alves, R.C.; Melati, R.B.; Casagrande, G.M.S.; Contiero, J.; Pagnocca, F.C.; Brienzo, M. Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. J. Chem. Technol. Biotechnol. 2020, 96, 327–334. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Liu, D. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefining 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Brienzo, M.; Abud, Y.; Ferreira, S.; Corrales, R.C.; Ferreira-Leitão, V.S.; de Souza, W.; Sant’anna, C. Characterization of anatomy, lignin distribution, and response to pretreatments of sugarcane culm node and internode. Ind. Crops Prod. 2016, 84, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Brienzo, M.; Ferreira, S.T.; Vicentim, M.P.; De Souza, W.; Sant’anna, C. Comparison Study on the Biomass Recalcitrance of Different Tissue Fractions of Sugarcane Culm. BioEnergy Res. 2014, 7, 1454–1465. [Google Scholar] [CrossRef]
- Siqueira, G.; Milagres, A.M.F.; Carvalho, W.; Koch, G.; Ferraz, A. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol. Biofuels 2011, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzym. Res. 2011, 2011, 787532. [Google Scholar] [CrossRef] [Green Version]
- De Figueiredo, F.C.; Carvalho, A.F.A.; Brienzo, M.; Campioni, T.S.; de Oliva-Neto, P. Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresour. Technol. 2017, 228, 164–170. [Google Scholar] [CrossRef]
- Brienzo, M.; Siqueira, A.F.; Milagres, A.M.F. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem. Eng. J. 2009, 46, 199–204. [Google Scholar] [CrossRef]
- Vena, P.F.; García-Aparicio, M.P.; Brienzo, M.; Görgens, J.F.; Rypstra, T. Effect of Alkaline Hemicellulose Extraction on Kraft Pulp Fibers from Eucalyptus grandis. J. Wood Chem. Technol. 2013, 33, 157–173. [Google Scholar] [CrossRef]
- Vena, P.F.; García-Aparicio, M.; Brienzo, M.; Gorgens, J.F.; Rypstra, T. Dilute sulphuric acid extraction of hemicelluloses from eucalyptus grandis and its effect on kraft and soda-aq pulp and handsheet properties. Cellul. Chem. Technol. 2015, 49, 819–832. [Google Scholar]
- Freitas, C.; Carmona, E.C.; Brienzo, M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact. Carbohydr. Diet. Fibre 2019, 18, 100184. [Google Scholar] [CrossRef]
- Naran, R.; Black, S.; Decker, S.R.; Azadi, P. Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose 2009, 16, 661–675. [Google Scholar] [CrossRef]
- Rowley, J.; Decker, S.R.; Michener, W.; Black, S. Efficient extraction of xylan from delignified corn stover using dimethyl sulfoxide. 3 Biotech 2013, 3, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Shukla, A.; Tiwari, S.; Srivastava, M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energy Rev. 2014, 32, 713–728. [Google Scholar] [CrossRef]
- Melati, R.B.; de Freitas, C.; Brienzo, M. Analytical Techniques Applied to Hemicellulose Structure and Functional Characterization. In Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy, Clean Energy Production Technologies; Brienzo, M., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Macedo, J.V.C.; Martins, J.R.; Abe, M.M.; Branciforti, M.C.; Brienzo, M. Hemicellulose Application for the Production of Bioplastics and Biomaterials. In Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy, Clean Energy Production Technologies; Brienzo, M., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Candido, J.P.; Claro, E.M.T.; de Paula, C.B.C.; Shimizu, F.L.; Leite, D.A.N.D.O.; Brienzo, M.; Angelis, D.D.F.D. Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J. Microbiol. Biotechnol. 2020, 36, 43. [Google Scholar] [CrossRef]
- Liu, S. Chemical kinetics of alkaline peroxide brightening of mechanical pulps. Chem. Eng. Sci. 2003, 58, 2229–2244. [Google Scholar] [CrossRef]
- Mendes, F.M.; Fonseca, M.B.; Ferraz, A.; Milagres, A.M.F. Anatomic and Ultrastructural Characteristics of Different Regions of Sugar Cane Internodes Which Affect Their Response to Alkaline-Sulfite Pretreatment and Material Recalcitrance. Energy Fuels 2016, 30, 1078–1084. [Google Scholar] [CrossRef]
- Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory testing of methodos for assay of xylanase activity. J. Biotechnol. 1992, 23, 257–270. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Magaton, A.D.S.; Piló-Veloso, R.; Colodette, J.L. Caracterização das O-acetil-(4-O-metilglicurono)xilanas isoladas da madeira de Eucalyptus urograndis. Química Nova 2008, 31, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.S.P.; Muralikrishna, G. Structural characteristics of water-soluble feruloyl arabinoxylans from rice (Oryza sativa) and ragi (finger millet, Eleusine coracana): Variations upon malting. Food Chem. 2007, 104, 1160–1170. [Google Scholar] [CrossRef]
- Habibi, Y.; Mahrouz, M.; Vignon, M.R. Isolation and structure of d-xylans from pericarp seeds of Opuntia ficusindica prickly pear fruits. Carbohydr. Res. 2002, 337, 1593–1598. [Google Scholar] [CrossRef]
- Sporck, D.; Reinoso, F.A.M.; Rencoret, J.; Gutiérrez, A.; del Rio, J.C.; Ferraz, A.; Milagres, A.M.F. Xylan extraction from pretreated sugarcane bagasse using alcaline and enzymatic approaches. Biotechnol Biofuels 2017, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Geng, W.; Venditti, R.A.; Pawlak, J.J.; Chang, H.-M. Effect of delignification on hemicellulose extraction from switchgrass, poplar, and pine and its effect on enzymatic convertibility of cellulose-rich residues. Bioresources 2018, 13, 4946–4963. [Google Scholar] [CrossRef]
- Costa, T.H.; Masarin, F.; Bonifácio, T.O.; Milagres, A.M.; Ferraz, A. The enzymatic recalcitrance of internodes of sugar cane hybrids with contrasting lignin contents. Ind. Crops Prod. 2013, 51, 202–211. [Google Scholar] [CrossRef]
Sugarcane Biomass | Sodium Sulfite (%, m/m) | Solubilization Yield (%) | Residual Lignin (%) | Conductivity (µS/cm at 25 °C) | Solubility (%, m/v) |
---|---|---|---|---|---|
Bagasse | 5 | 68 a | 18 a | 18 | 94 |
10 | 77 b | 15 b | 19 | 77 | |
20 | 53 c | 12 c | 14 | 92 | |
Internode | 5 | 62 d | 14 b | 21 | 94 |
10 | 30 e | 8 d | 19 | 84 | |
20 | 41 f | 6 e | 11 | 70 | |
Node | 5 | 56 c | 6 e | 20 | 94 |
10 | 79 b | 5 e | 18 | 87 | |
20 | 55 c | 10 d | 13 | 87 | |
External Fraction | 5 | 79 b | 18 a | 21 | 96 |
10 | 98 g | 12 c | 19 | 79 | |
20 | 51 c | 16 b | 11 | 76 | |
Leaf | 10 | 91 f | 15 b | 19 | 84 |
20 | 66 a | 15 b | 12 | 81 | |
Birchwood Xylan | - | - | - | 12 | 70 |
Sodium Acetate Buffer pH 4.8 | - | - | - | 10 | - |
Sugarcane Biomass | Sodium Chlorite (%, m/m) | Extraction Yield (%) | Residual Lignin (%) | Conductivity (µS/cm at 25 °C) | Solubility (%, m/v) |
---|---|---|---|---|---|
Bagasse | 5 | 40 a | 9 a | 20 | 90 |
10 | 98 b | 9 a | 17 | 85 | |
20 | 85 c | 7 b | 18 | 75 | |
Internode | 5 | 8 d | 9 a | 20 | 84 |
10 | 22 e | 8 b | 15 | 90 | |
20 | 63 f | 4 c | 19 | 77 | |
Node | 5 | 41 a | 5 c | 20 | 84 |
10 | 42 a | 4 c | 17 | 87 | |
20 | 49 g | 7 b | 18 | 76 | |
External Fraction | 5 | 22 e | 6 d | 20 | 91 |
10 | 99 b | 7 d | 17 | 88 | |
20 | 85 c | 6 d | 19 | 74 | |
Leaf | 10 | 90 h | 9 a | 17 | 82 |
20 | 46 g | 7 b | 19 | 81 | |
Birchwood Xylan | - | - | - | 12 | 70 |
Sodium Acetate Buffer pH 4.8 | - | - | - | 10 | - |
Sugarcane Biomass | Hydrogen Peroxide (%, m/m) | Solubilization Yield (%) | Residual Lignin (%) | Conductivity (µS/cm at 25 °C) | Solubility (%, m/v) |
---|---|---|---|---|---|
Bagasse | 5 | 12 a | 13 a | 17 | 86 |
10 | 93 b | 13 a | 18 | 87 | |
20 | 84 c | 10 b | 18 | 74 | |
Internode | 5 | 27 d | 10 b | 18 | 87 |
10 | 97 e | 7 c | 17 | 90 | |
20 | 98 e | 4 d | 19 | 82 | |
Node | 5 | 36 f | 7 c | 17 | 93 |
10 | 90 b | 7 c | 16 | 88 | |
20 | 99 e | 3 d | 17 | 94 | |
External fraction | 5 | 19 g | 7 c | 16 | 74 |
10 | 88 h | 10 b | 18 | 83 | |
20 | 99 e | 12 a | 19 | 80 | |
Leaf | 10 | 98 e | 10 c | 17 | 85 |
20 | 98 e | 17 e | 20 | 75 | |
Birchwood xylan | - | - | - | 12 | 70 |
Sodium acetate buffer pH 4.8 | - | - | - | 10 | - |
Delignification Reagent (10%, m/m) | Mass Recovery (%) | Initial Lignin (%) | Residual Lignin (%) | Solubility (%) | Conductivity (uS/cm at 25 °C) |
---|---|---|---|---|---|
Hydrogen peroxide | 79 ± 6 a | 6 ± 2 | 3 ± 0 a | 96 ± 3 a | 14 ± 0 a |
Sodium chlorite | 87± 3 a | 6 ± 2 | 6 ± 0 b | 95 ± 0 a | 14 ± 0 a |
Sodium sulfite | 78 ± 9 a | 6 ± 2 | 6 ± 1 b | 94 ± 1 a | 21 ± 0 b |
Birchwood xylan | - | - | - | 70 | 12 |
Sodium acetate buffer pH 4.8 | - | - | - | - | 10 |
Xylan Origin | Activity (UI/mL) | Xylan Solubility (%) | Lignin Content (%) |
---|---|---|---|
Birchwood xylan–Sigma Aldrich | 106 ± 10 a | 70 a | - |
From the biomass delignified with 5% hydrogen peroxide | 175 ± 17 b | 86 b | 7 ± 0 a |
From the biomass delignified with 10% hydrogen peroxide | 166 ± 23 b | 87 b | 10 ± 0 b |
Xylan delignified with 10% (m/m) hydrogen peroxide | 137 ± 22 c | 96 c | 3 ± 0 c |
Xylan delignified with 10% (m/m) sodium chlorite | 58 ± 30 d | 95 c | 6 ± 0 d |
Xylan delignified with 10% (m/m) sodium sulfite | 85 ± 12 d | 94 c | 6 ± 1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melati, R.B.; Sass, D.C.; Contiero, J.; Brienzo, M. Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan. Polysaccharides 2023, 4, 176-188. https://doi.org/10.3390/polysaccharides4020013
Melati RB, Sass DC, Contiero J, Brienzo M. Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan. Polysaccharides. 2023; 4(2):176-188. https://doi.org/10.3390/polysaccharides4020013
Chicago/Turabian StyleMelati, Ranieri Bueno, Daiane Cristina Sass, Jonas Contiero, and Michel Brienzo. 2023. "Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan" Polysaccharides 4, no. 2: 176-188. https://doi.org/10.3390/polysaccharides4020013
APA StyleMelati, R. B., Sass, D. C., Contiero, J., & Brienzo, M. (2023). Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan. Polysaccharides, 4(2), 176-188. https://doi.org/10.3390/polysaccharides4020013