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Abstract: This study determined the optimal production of furfural (FuR) from liquid hydrolysate
xylan liquor obtained through a two-stage pretreatment process using NaOH for de-ashing and EtOH
for the delignification of raw rice husk (RH). The de-ashing pretreatment was conducted at 150 ◦C,
with 6.0% (w/v) NaOH and a reaction time of 40 min. The optimal conditions for delignification
pretreatment, performed using an organosolv fractionation method with EtOH, were a reaction
temperature of 150 ◦C, 60% (v/v) EtOH, 0.25% (w/v) H2SO4, and a reaction time of 90 min. Through
a two-stage pretreatment process, a liquid hydrolysate in the form of xylan liquor was obtained,
which was subjected to an acid catalytic conversion process to produce FuR. The process conditions
were varied, with reaction temperatures of 130–170 ◦C, H2SO4 catalyst concentrations of 1.0–3.0 wt.%,
and reaction times of 0–90 min. The Response Surface Methodology tool was used to identify the
optimal FuR yield from xylan liquor. Ultimately, the optimal process conditions for the acid catalytic
conversion were found to be a substrate-to-catalyst ratio of 2:8, a reaction temperature of 168.9 ◦C, a
catalyst concentration of 1.9 wt.%, and a reaction time of 41.24 min, achieving an FuR yield of 67.31%.

Keywords: rice husk (RH); pretreatment; xylan liquor; acid catalytic conversion; RSM

1. Introduction

With the growing global interest in sustainable chemical industries and renewable
energy, the research on renewable resources such as biomass, hydropower, wind, and solar
energy is expanding [1–3]. This trend reflects the ongoing concerns regarding environ-
mental issues such as water pollution, air pollution, and global warming arising from the
use of fossil fuels [4]. Additionally, fossil fuels are finite resources with limited reserves,
making the development of alternative energy sources essential [5,6]. As an alternative to
fossil fuels, biomass offers the advantages of being a nearly infinite resource that is widely
distributed globally and is environmentally friendly [7–11].

Biomass is classified into the first, second, and third generations. First-generation biomass
consists of edible crops such as sugarcane and corn. Second-generation biomass includes
lignocellulosic nonedible crops, whereas third-generation biomass refers to marine plants
such as microalgae and seaweed. Extensive research has focused on second-generation
biomass, because first-generation biomass raises ethical issues related to food security, whereas
third-generation biomass faces technological and geographical challenges [12,13]. Second-
generation biomasses, known as lignocellulosic biomasses (LCBs), are composed of 30–50%
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cellulose, 10–30% hemicellulose, 10–25% lignin, and other substances such as ash and
protein [14,15]. Glucose and xylose are the monomers of cellulose and hemicellulose,
respectively, which constitute LCBs. Both these substances can be converted into valuable
products via chemical and biological processes [16]. For instance, levulinic acid derived
from glucose and furfural (FuR) derived from xylose can serve as intermediates in the
production of final products such as bio-oil, solvents, gasoline additives, pharmaceuticals,
biopolymers, and jet fuel [17–23].

FuR, an organic compound belonging to the furan series, features an aldehyde group
attached to the second carbon atom of the furan ring. Consequently, it is also called
2-furaldehyde or 2-furfural [24,25]. The pentagonal heterocyclic structure not only facili-
tates interactions with other substances but also stabilizes the structure of FuR. Additionally,
the aldehyde group attached to the second carbon atom allows for various organic reactions,
making it advantageous for chemical transformations. Because of its simple yet unique
structure, FuR can serve as an intermediate in the synthesis of various compounds, making
it a valuable substance across multiple industrial fields [26]. FuR can be obtained through
the dehydration reaction of xylose, which is derived from the hydrolysis of xylan present
in agricultural byproducts such as wheat meal, corncobs, and rice husk (RH) [19].

Rice production was as high as 523.9 million tons in 2023/24 [27], ensuring a substan-
tial supply of the byproduct RH. However, the direct conversion of raw RH results in a
low product yield. This is because RH, being an LCB, has a complex structure in which
cellulose, hemicellulose, and lignin are intricately intertwined, making it recalcitrant to
external attacks. Therefore, pretreatment to remove lignin is necessary [28,29]. Additionally,
RH contains a high ash content of 10–20% compared to other LCBs. This ash is composed
of 87–97% silica, which acts as an additional protective barrier against chemical attacks.
Therefore, for more efficient FuR production, pretreatment to remove ash is essential [30].
Consequently, similar to other LCBs, RH undergoes various pretreatment methods using
alkaline [31,32] and acidic solvents [33], as reported in numerous studies.

Among the various pretreatment methods, the use of alkaline NaOH to pretreat
RH selectively removes the ash content (de-ashing), resulting in a significantly reduced
ash content in the solid form of de-ashed RH [34]. When this de-ashed RH undergoes
organosolv fractionation pretreatment using EtOH, delignification occurs, maintaining the
purity of the carbohydrates. This process yields a solid fraction enriched in C6 (mainly
glucan, a polymer of glucose monomers) and a liquor fraction enriched in C5 (mainly xylan
and lignin) [35]. Since the liquid hydrolysate obtained from the two-stage pretreatment of
de-ashing and delignification contains a large amount of xylan, it can be used to produce
FuR through chemical conversion.

The aim of this study was to optimize FuR production from xylan liquor. We employed
various pretreatment methods, including the degradation of xylan liquor and acid catalytic
conversion. We identified efficient pretreatment methods by examining the correlations
between process variables such as the reaction temperature, reaction time, and catalyst
concentration used in the pretreatment stage. Additionally, the degradation reaction of
xylan to xylose in liquid hydrolysate is discussed. The acid catalytic conversion process
was optimized for FuR yield using the Box–Behnken design (B–B design) for the Response
Surface Methodology (RSM) tool.

2. Materials and Methods
2.1. Materials

RH was used as the biomass for pretreatment and acid catalytic conversion processes.
The RH was harvested in 2017 and purchased from a local rice-processing complex (RPC),
and the RH was harvested from Gipmo, Gyeonggi-do, Republic of Korea, in the fall of
2017. It was dried in a convection oven (FC-RP-1500, Lab House, Seoul, Republic of Korea)
at 45 ± 5 ◦C for more than 48 h. Before use in the experiments, the RH was stored in an
automatic de-humidification desiccator. At this stage, the moisture content of the RH was
4.6% based on the oven-dry weight [36].



Polysaccharides 2024, 5 554

The pretreatment of RH used in the experiments was performed by SugarEn Co., Ltd.
(#B207, Seogwan, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea).
Owing to the high content of ash and lignin in the RH, a two-step pretreatment process
consisting of de-ashing pretreatment and delignification pretreatment was performed [36].

De-ashed RH was obtained by mixing the RH with NaOH, which resulted in solid-
form carbohydrates. Delignified RH was achieved through an organosolv reaction with
ethanol, removing lignin and separating the carbohydrates into C6 (glucan-rich) solids and
C5 (xylan-rich) liquids. In this study, xylan liquor, a C5 (xylan-rich) liquid carbohydrate
was used.

2.2. Methods
2.2.1. Pretreatment Using Alkaline Solution for De-Ashing of Raw RH

An alkaline fractionation process was employed to simultaneously remove hemicellu-
lose and ash from the RH. The process utilized a tubular reactor made of SS-316 with an
inner diameter of 10.7 mm, a length of 150 mm, and an internal volume of 13.5 mL. Oven-
dried RH (0.5 g) and an alkaline solution (10 mL) were used to achieve a solid-to-liquid
ratio of 1:10. To quickly preheat the reactor to the desired temperature, the reactor was
immersed in molten salt set at 240 ◦C, with a target time of 1.0 min to reach the desired
temperature. Upon reaching this temperature, the reactor was transferred to silicon oil,
maintaining a reaction temperature between 116 and 184 ◦C, reaction times of 6–74 min,
and a NaOH concentration of 1.0–6.0%. After the designated time, the reaction was rapidly
quenched to stop it.

For the pretreatment at bench-scale, a ball-milling reactor with a 30 L capacity was used.
It operated at 60 rpm under a pressure of 20 kgf cm−2, with alumina balls of 10 mm diameter
and 3.6 g cm−3 density. The de-ashing process used a ball-to-RH-to-alkaline solution ratio of
30:1:10. The residual solids were thoroughly washed with clean distilled water to prepare for
the delignification pretreatment using the organosolv fractionation method [36,37].

2.2.2. Delignification Pretreatment of De-Ashed RH

For the delignification pretreatment of the de-ashed RH, an organosolv fractionation
process was employed using ethanol as the organic solvent. Ethanol allows for the disso-
lution of hemicellulose (xylan-rich) and lignin in the liquid hydrolysate while retaining a
high content of cellulose (glucan-rich) in the residual solid. The process was performed at a
reaction temperature of 130–170 ◦C, with 60% ethanol concentration, and reaction times
ranging from 30 to 120 min. The sulfuric acid concentration and sol-to-liquid ratio were
maintained at 0.25% (w/v) and 1:10, respectively.

Adding sulfuric acid to ethanol-based organosolv fractionation reduces the severity
of the reaction and increases lignin solubility [38]. The delignification process followed
the same procedure as the de-ashing process. However, a different reactor, with an inner
diameter (ID) of 21.0 mm, length of 140 mm, and internal volume of 48.5 cm3, was used.

2.2.3. Degradation Reactions of Xylan Liquor

The degradation of xylan to xylose was used to accurately measure the initial con-
centration of xylose. We applied the secondary hydrolysis method from the National
Renewable Energy Laboratory (NREL) report NREL/TP-510-42623 [39]. The procedure for
the degradation reaction proceeded as follows:

First, the liquid xylan was placed in a 250 mL media bottle and then autoclaved at
121 ◦C for 1 h using a high-pressure steam sterilizer (HS-2321SD, Hanshin Medical Co., Ltd.,
166, Pyeongcheon-ro, Bupyeong-gu, Incheon, Republic of Korea) to ensure the sufficient
degradation of xylan to xylose. The samples used for the subsequent acid conversion
experiments always contained xylan that had been degraded under these conditions.
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2.2.4. Acid Catalytic Conversion in Batch Reaction

The acid catalytic conversion reaction of the degraded xylan liquor was performed
using an SS-316 batch reactor (outer diameter of 1/2 inch, length of 19.5 cm, internal volume
of 19 cm3). The acid catalytic conversion reactions were conducted at a reaction temperature
range of 130–170 ◦C and reaction times ranging from 0 to 90 min. The substrate/catalyst
ratio was 2:8. The reaction system, as shown in the diagram (Figure 1) below, consisted of a
preheating oil bath to preheat the reactor, a main oil bath to maintain the reaction at specific
times, and a cooling bath. Both the oil baths were equipped with temperature controllers to
allow precise temperature settings. It required approximately 5 min to preheat the reactor
to the set reaction temperature. After reaching the set reaction temperature, the batch
reactor was removed at specific intervals and placed in a cooling bath for a set cooling
period. All experiments were conducted at least three times to ensure reproducibility, and
the results were calculated as average values.
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2.2.5. Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a tool used to analyze the effects of input
variables on outcomes in complex processes or systems and to determine optimal conditions.
It is used in various fields, such as chemical processes, manufacturing processes, and food
engineering. RSM plays a crucial role in effectively collecting data through experimental
design, data analysis, and the creation of mathematical models. By analyzing the response
surfaces, optimal conditions can be predicted, reducing the number of experiments and the
costs. This maximizes experimental efficiency and enhances the reliability of the results. In
this study, we used a B–B design with three independent variables: reaction temperature,
catalyst concentration, and reaction time [40].

2.3. Analysis and Determination of Samples

For the analysis samples, we used D-(+)-Glucose (Sigma-Aldrich Co., St.Louis, MO, USA,
Cas No. 50-99-7), D-(+)-Xylose (Sigma, Cas No. 58-86-6), formic acid (Sigma, Cas No. 64-18-6),
levulinic acid (Sigma, Cas No. 123-76-2), 5-HMF (Sigma, Cas No. 67-47-0), and FuR (Sigma,
Cas No. 98-01-1). Sulfuric acid (SAMCHUN, Seoul, Republic of Korea, CAS No. 7664-93-9)
was used as the catalyst and was diluted to 1.0–3.0 wt.% with distilled water. Calcium carbon-
ate (DUKSAN, Gyeonggi, Republic of Korea, Cas No. 471-34-1) was used to neutralize the
conversion liquid for the component analysis of the acid catalytic conversion liquid.

Solid analysis of the pretreated RH was conducted using the NREL/TP-510-42618 ana-
lytical method [41]. Liquid analyses of the initial xylan liquor, degraded xylan liquor, and
products from the acid catalytic conversion were performed using high-performance liquid
chromatography (HPLC). The main analytes were monosaccharides (glucose and xylose),
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organic acids (formic acid and levulinic acid), and furanic compounds (5-HMF and FuR).
The HPLC system consisted of a Bio-Rad Aminex HPX-87H column (300 mm × 7.8 mm;
Bio-Rad. Inc., Hercules, CA, USA) and a refractive index detector (RID–410, Shimadzu, Ky-
oto, Japan). The mobile phase was 5 mM sulfuric acid pumped at a flow rate of 0.6 mL/min.
The column oven was set at 60 ◦C, and the RI detector was set at 50 ◦C. Before injecting the
samples into the HPLC, they were centrifuged at 14,000 rpm and filtered through a 0.45 µm
syringe filter [42,43].

Because the sulfuric acid used in the acid catalytic conversion process can affect the
peaks of the reducing sugars, each sample was neutralized with calcium carbonate before
analysis. After neutralization, the samples were centrifuged, and only the supernatant was
collected for analysis [44]. The xylose conversion, FuR yield, and selectivity were calculated
using the following equations [45]:

xylose conversion (%) = (moles of reacted xylose)/(moles of initial xylose) × 100 (1)

FuR yield (%) = (moles of produced FuR)/(moles of initial xylose) × 100 (2)

FuR selectivity (%) = (moles of produced FuR)/(moles of reacted xylose) × 100 (3)

3. Results and Discussions
3.1. Pretreatment of Raw RH
3.1.1. De-Ashing Pretreatment of Raw RH

De-ashed RH with selectively removed ash was used to produce an efficient carbo-
hydrate feedstock, as listed in Table 1. During the de-ashing process, it was presumed
that the chemical bonds and dense structure of RH were disrupted, allowing relatively
mild reaction conditions to determine the optimal pretreatment conditions. The process
variables included a reaction temperature range of 116–184 ◦C, reaction times of 6–74 min,
and NaOH concentrations of 1.0–6.0%. The optimal de-ashing yield was achieved at 150 ◦C,
a reaction time of 40 min, and a NaOH concentration of 6.0% (w/v) [37]. The de-ashed RH
was obtained in solid form, showing a decrease in ash content from 16.2 to 0.9 wt.%, which
led to an increase in the relative contents of glucan and xylan. Therefore, the de-ashing
pretreatment of raw RH using NaOH not only effectively removed the ash surrounding the
RH but also preserved the high yield of carbohydrates.

Table 1. Composition of de-ashed RH.

Components Concentration [wt.%]

Raw RH De-Ashed RH

Carbohydrates Glucan 34.4 ± 0.1 50.3 ± 0.2
Xylan 15.6 ± 0.0 20.2 ± 0.6

Galactan 1.8 ± 0.2 1.5 ± 0.0
Arabinan 1.9 ± 0.0 2.5 ± 0.0
Mannan 0.3 ± 0.0 0.3 ± 0.0

Lignins Acid-insoluble lignin 23.2 ± 0.0 22.4 ± 0.1
Acid-soluble lignin 1.0 ± 0.0 0.8 ± 0.0

Ash 16.2 ± 0.2 0.9 ± 0.1

3.1.2. Organosolv Fractionation for Delignification Pretreatment of De-Ashed RH

Because the de-ashed RH still contained significant amounts of lignin, which acted as
an inhibitor of downstream processes, a two-stage pretreatment process was employed.
The initial de-ashing pretreatment was followed by a delignification pretreatment using
organosolv fractionation. For the delignification, a 0.25% (w/w) sulfuric acid catalyst was
used in 60% (v/v) ethanol as the organic solvent, with reaction temperatures ranging from
130◦ to 170 ◦C and reaction times ranging from 0 to 120 min.

Figure 2 illustrates the changes in the contents of glucan, xylan, ash, and lignin in the
solid fraction when reacting de-ashed RH with an organic solvent at a solid-to-liquid ratio
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of 1:10, within the temperature range of 130◦ to 170 ◦C and reaction times from 30 min to
120 min. Glucan showed a decreasing trend in the amount preserved in the solid fraction as
the reaction conditions became harsher; however, its preservation rate remained high, ranging
from 93.1% to 98.1%. Conversely, xylan was largely extracted at temperatures above 170 ◦C,
with an extraction rate ranging from 19.6% to 92.5% across the temperature range.
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RH using organosolv fractionation. Note: Untreated means de-ashed RH. Pretreatment conditions:
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Figure 3 shows the results for the liquid fraction. The graph shows changes in compo-
nent contents under similar conditions, with a ratio of 1:10 and reaction temperatures from
130◦ to 170 ◦C over 30 to 120 min. As the reaction time increased, the xylose content initially
increased but then decreased, while the FuR content showed an increasing trend. Xylose
was converted to FuR as the reaction conditions became more severe, so the highest xylose
preservation with minimal conversion to FuR was observed at 150 ◦C and 90 min. Thus,
these conditions were selected as the optimal conditions for delignification pretreatment
using organosolv fractionation. The glucan, xylan, lignin, and ash contents in the residual
solids after the fractionation process, depending on the reaction time and temperature, are
shown in Table 2.
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Table 3 lists the changes in glucan, xylan, and other components before and after
delignification pretreatment. This comparison highlights the effectiveness of the organosolv
fractionation delignification pretreatment.

After pretreatment, the glucan content decreased by 1.2 g compared to the initial
amount, whereas the xylan content decreased by 4.3 g. The loss of glucan was less signif-
icant than the loss of xylan. Lignin content was significantly reduced to approximately
62.5% in the delignificated RH in solid form, and the proportion of ash also decreased.
Consequently, the solid fraction obtained after the delignification pretreatment primarily
consisted of C6-rich glucan, whereas the liquid fraction mainly contained C5-rich xylan
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and dissolved lignin in ethanol. The substrate used in the experiment was a C5-rich xylan
liquor obtained via this pretreatment process.

Table 2. Remaining yield for the solid part by the reaction conditions of delignification pretreatment.

Reaction Conditions Remaining Yield

Biomass
Temperature Time Glucan Xylan Lignin Ash

[◦C] [min] [%] [%] [%] [%]

RH

130

30 57.1 19.3 19.1 0.0
60 59.7 18.6 17.3 0.2
90 61.5 18.0 16.5 0.0
120 61.9 16.8 16.4 0.2

150

30 63.7 15.5 16.1 0.0
60 67.8 12.7 16.1 0.0
90 73.1 9.7 14.7 0.4
120 72.8 9.0 13.1 0.0

170

30 76.1 6.1 13.7 1.2
60 81.8 4.5 9.8 1.2
90 80.7 3.4 12.0 1.0
120 84.6 2.7 8.9 1.2

Table 3. Compositions of delignificated RH.

Component De-Ashed RH (100 g)
After Organosolv Fractionation

Solid (66.2 g) Liquid

Glucan 50.3 g 48.4 g 0.7 g

Xylan 20.2 g 6.4 g 9.5 g

Lignin 23.2 g 8.7 g 14.5 g

Ash 0.9 g 0.2 g 0.7 g

Other 5.4 g - -

3.2. Degradation Reactions of Xylan Liquor

The composition of the xylan liquor after the two-stage pretreatment comprising
de-ashing and delignification is shown in Table 4. The xylan liquor delignificated via
organosolv fractionation contained a small amount of glucose, with xylan as the main com-
ponent. It was confirmed that the xylan liquor was C5-enriched, containing approximately
25.86 g/L of xylan in both monomer and oligomer forms. Because a significant amount
of xylan dissolved in the liquid phase, the goal was to obtain FuR using an acid catalytic
conversion process.

Table 4. Compositions of initial xylan liquor.

Components
Concentration [g/L]

Monomer Oligomer 1

Glucan 1.25 1.16
Carbohydrates Xylan 17.87 7.99

Arabinose 4.08 N/D 2

Subtotal 23.2 9.15
1 Concentrations of oligomer have been calculated by the inversed calculation method during the secondary
hydrolysis process. 2 N/D means not analyzed due to not being of significant value.
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As a result of the acid conversion process experiment for FuR production, it was
confirmed that the yield of FuR was calculated to be excessively high at 80.41% under the
conditions of 150 ◦C reaction temperature, 3.0 wt.% sulfuric acid catalyst concentration, and
a 60 min reaction time, as shown in Figure 4b. This indicated the need to re-evaluate the
initial concentration of xylose. The pretreated xylan liquor contained xylose, which could
be directly converted to FuR, xylan, and xylo-oligomers. As the reaction progressed, the
breakdown of xylan and xylo-oligomers into xylose occurred simultaneously, making the
initial concentration of xylose ambiguous. Therefore, to determine the initial concentration
of xylose, a xylan degradation reaction was conducted by referring to NREL/TP-510-42623,
which was used for biomass component analysis. The degradation reaction was performed
in xylan liquor in an autoclave at 121 ◦C for 1 h. The composition of the liquid xylan after the
reaction is shown in Table 5. After the degradation reaction, it was found that the concen-
tration of xylose in monomer form increased from 17.87 g/L to approximately 27.148 g/L,
an increase of about 9.3 g/L. This confirmed the presence of xylan and xylo-oligomers
that had not been broken down into xylose. When a substrate from the degradation reac-
tion of xylan liquor was used, the FuR yield in the acid catalytic conversion process was
consistently calculated.
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Table 5. Compositions of degraded xylan liquor.

Components Concentration [g/L]

Glucose 2.149
Carbohydrates Xylose 27.148

Arabinose -

3.3. FuR Production
3.3.1. Acid Catalytic Conversion of Degraded Xylan Liquor

The acid catalytic conversion of the xylan liquor after the degradation reaction was
performed with the same substrate-to-catalyst ratio and reaction time (0–90 min). The
initial concentration of xylose was approximately 5.5 ± 0.2 g/L, and the experiments were
conducted under consistent concentration conditions. To determine the yield of FuR, the
reaction temperature was set between 130 and 170 ◦C, and the experiments were performed
in a batch reactor system using sulfuric acid catalyst concentrations of 1.0 to 3.0 wt.%.
Figure 5 shows FuR yields at different reaction temperatures. Figure 5a shows the results
of the acid conversion experiment conducted at a reaction temperature of 130 ◦C. The yield
of FuR was approximately 16.60% when 3.0 wt.% sulfuric acid was used, indicating that
the reaction of xylose with FuR was not sufficient within the given reaction time. Therefore,
a longer reaction time was required to achieve a higher FuR yield, which was considered
inefficient for the experimental conditions. Figure 5b,c show the results of experiments
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conducted at reaction temperatures of 150 and 170 ◦C, respectively. At 150 ◦C, the yield of
FuR was approximately 63.43% after 80 min reaction time when using 2.0 wt.% sulfuric
acid. At 170 ◦C, the yield of FuR was approximately 65.56% after 40 min reaction time
when using 2.0 wt.% sulfuric acid. Unlike the 130 ◦C condition, both the 150 ◦C and 170 ◦C
conditions showed a tendency for the FuR yield to decrease over time when using 3.0 wt.%
sulfuric acid compared to 2.0 wt.%. This suggests that an overreaction occurred, converting
FuR into subsequent products due to the higher concentration of sulfuric acid [46,47].
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Figure 5. FuR yield from degraded xylan liquor by acid catalytic conversion at different temperatures:
(a) 130 ◦C; (b) 150 ◦C; (c) 170 ◦C. All experiments were conducted at a substrate-to-catalyst ratio of
2 mL/8 mL and with a reaction time from 0 to 90 min.

3.3.2. Optimization Variables for Acid Catalytic Conversion of Degraded Xylan Liquor

To clearly determine the optimal conditions, we aimed to identify them using the
B–B design of the RSM based on the experimental results. The independent variables
in the experiment were set as reaction temperature (130–170 ◦C), sulfuric acid catalyst
concentration (1.0–3.0 wt.%), and reaction time (0–90 min), as shown in Table 6.

Table 6. B–B design conditions for the acid catalytic conversion of degraded xylan liquor.

Variable Factor Levels

Reaction temperature (◦C) X1 130 150 170
Catalyst concentration (wt.%) X2 1.0 2.0 3.0

Reaction time (min) X3 10 50 90

The response values of the B–B design included the conversion rate of xylose and
yield of FuR, as shown in Table 7. The RSM describes the optimal conditions for the
acid conversion of xylan liquor after the degradation reaction. A predictive model for
the optimal FuR yield was developed based on the results of the acid conversion process
through batch reactions. The coefficient of determination (R2) for the predictive model for
the xylose conversion rate was 0.9450 for the quadratic model, indicating high reliability,
whereas the predictive model for FuR yield showed a value of 0.8997, indicating a good fit.

The optimal conditions for each variable for FuR yield were predicted to be a reaction
temperature of 168.97 ◦C, sulfuric acid catalyst concentration of 1.91 wt.%, and reaction
time of 41.2 min. Under these conditions, the conversion rate of xylose and the yield of FuR
were predicted to be 93.6192% and 67.5545%, respectively. These results are represented by
Equations (4) and (5):

Predicted xylose conversion (%) = 67.38 + 34.60X1 + 8.79X2 + 12.87X3 +
2.69X1X2 − 1.68X1X3 + 8.23X2X3 − 3.43X1

2 − 9.47X2
2 − 0.75 X3

2 (4)

Predicted FuR yield (%) = 49.11 + 23.61X1 + 8.43X2 + 6.64X3 − 3.30X1X2 −
5.29X1X3 + 3.41X2X3 − 4.33X1

2 − 13.30X2
2 − 8.75 X3

2 (5)
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The 3D response surface curves were obtained by plotting two variables on the X- and
Y-axes while keeping the remaining variable at mid-level (0). Figure 6 shows the contour
and surface plots for optimizing FuR yield conditions. Figure 6a illustrates the effects of
the reaction temperature and sulfuric acid catalyst concentration on the FuR yield. As the
reaction temperature increased, the FuR yield also increased. However, when both the
reaction temperature and sulfuric acid catalyst concentration increased together, the FuR
yield initially increased and then showed a decreasing trend. An improved FuR yield was
observed at near 170 ◦C with moderate catalyst concentrations.

Table 7. Results for coded factor levels for a B–B design.

Run X1 X2 X3 Xylose Conversion (%) FuR Yield (%)

1 150 2.0 50 64.5689 48.1429

2 150 1.0 10 34.2083 3.6286

3 150 2.0 50 60.9909 39.5519

4 150 2.0 50 67.1875 56.7985

5 170 2.0 10 84.9209 61.9103

6 150 2.0 50 74.5416 49.3514

7 130 2.0 90 44.8293 20.7164

8 130 2.0 10 23.0202 5.1464

9 170 3.0 50 100 53.1180

10 130 3.0 50 14.7813 11.4535

11 150 2.0 50 69.5976 51.6818

12 170 1.0 50 88.7973 58.0865

13 150 3.0 90 96.5595 57.3082

14 150 1.0 90 50.7911 18.3826

15 170 2.0 90 100 56.3274

16 150 3.0 10 47.0739 28.9095

17 130 1.0 50 14.3225 3.2147

Figure 6b shows the response surface for the FuR yield concerning reaction tempera-
ture and reaction time. As the reaction time increased, the FuR yield initially increased and
then decreased, suggesting that prolonged reaction times at a given temperature led to an
overreaction and a subsequent decrease in FuR yield. The optimal FuR yield was observed
between 40 and 50 min near 170 ◦C of reaction temperature.

Figure 6c shows the correlation between the sulfuric acid catalyst concentration and
reaction time. As shown in Figure 6a,b, the FuR yield did not increase continuously with
higher values of both variables but showed improved yields at moderate values.
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3.3.3. Validation of the RSM Results

Using the conditions predicted by the RSM model for the optimal FuR yield, as
specified in Equation (4), the acid catalytic conversion of xylan liquor after the degradation
reaction was conducted, and the results are shown in Figure 7. The process conditions
included a substrate-to-catalyst ratio of 2 mL/8 mL, a reaction temperature of 169 ◦C, a
catalyst concentration of 1.9 wt.%, and a reaction time of 0–90 min, including the verification
of the predicted value for reaction time (41.24 min). The resulting FuR yield was 67.31%,
which was close to the RSM-predicted value of 67.5545%. The ANOVA results for the
FuR yield, particularly the lack-of-fit tests for the quadratic model, suggested a p-value of
0.0749 and an F-value of 5.09, indicating potential noise. Nevertheless, results similar to
the model predictions were obtained through experiments with more than three replicates,
confirming the reliability of the model.

The reaction temperature, catalyst concentration, and reaction time play crucial roles
in FuR production. To validate the optimal process based on the correlations between
these variables, the relationship between FuR yield and selectivity was examined and is
shown in Figure 8. In Figure 8a, the concentration of FuR was the highest at 2.34 g/L at a
reaction time of 41.2 min, indicating that the reaction conditions are highly effective for FuR
production. Additionally, the concentrations of FuR and formic acid decreased as xylose
participated in the reaction. This supports the earlier observation of an overreaction of FuR
after a certain reaction time.
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temperature (169 ◦C), catalyst concentration (1.9 wt.%), reaction time (0–90 min).

Figure 8b shows the selectivity of FuR for xylose. At a reaction time of 41.2 min, the
selectivity for FuR was 67.64%, meaning that about two-thirds of the substance produced
from xylose in the reaction comprised FuR, which is considered relatively high selectivity.
In another study on the acid catalytic conversion of pure xylose using the same reactor [48],
under the conditions of an initial xylose concentration of 10 g/L, a reaction temperature
of 180 ◦C, a reaction time of 10 min, and a sulfuric acid catalyst concentration of 3.0 wt.%,
the yield of FuR was 65.79%, and the selectivity was 66.24%. Although the reaction
conditions used by Lee and Kim were harsher, the yield and selectivity of FuR from the
acid catalytic conversion of xylose in liquor form show a similar trend to the results of this
study. Therefore, it can be concluded that under similar experimental conditions, the yield
of FuR from xylose is expected to be 65 to 70%.

As the concentration of FuR decreased, the selectivity of FuR toward xylose also
decreased. Therefore, based on Figure 8a,b, the optimal reaction time for FuR production
via the acid catalytic conversion of degraded xylan was 41.2 min. The concentration
of sulfuric acid used as the catalyst was optimized to promote FuR production while
suppressing subsequent side reactions. Additionally, the intermediates remained stable up
to the optimal time, facilitating efficient conversion to FuR.

3.3.4. Overall Process for Optimum Conditions

The entire process of producing FuR from raw RH is illustrated in Figure 9. Initially,
to ensure the smooth downstream processing of raw RH, a de-ashing pretreatment was
performed to remove silica-based ash. After de-ashing, the solid-remaining fraction was
65.75%, which means that from 100 kg of raw RH, 65.75 kg of solid de-ashed RH was ob-
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tained. Specifically, after the selective removal of ash using NaOH, the glucan content was
50.3 wt.%, XMG was 22.0 wt.%, arabinan was 2.5 wt.%, ash was 0.9 wt.%, and lignin was
23.2 wt.%. The ash content decreased from 16.2 to 0.9 wt.%, achieving a reduction of approx-
imately 15.3 wt.%p in the solid content. However, de-ashed RH still contained 23.2 wt.%
lignin, which acted as a chemical inhibitor, necessitating delignification pretreatment.
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Figure 9. Overall process for optimized FuR production from raw RH. Note: XMG means xylan,
mannan, and galactan.

Following the delignification pretreatment using organosolv fractionation based on
EtOH, the remaining solid fraction was 66.20%, resulting in a total of 43.53 kg of solids
from the de-ashed RH. At this stage, the solid composition is 73.1 wt.% glucan, 9.67 wt.%
xylan, 0.3 wt.% ash, and 13.14 wt.% lignin, indicating a reduction in lignin content by
approximately 10.06 wt.%p. This demonstrates that, compared with the de-ashed RH, the
carbohydrate-to-lignin ratio in the delignificated RH was significantly improved, suggest-
ing that organosolv fractionation is highly effective in removing lignin.

Using organosolv fractionation for delignification pretreatment, an EtOH-based C5-rich
xylan liquor was obtained. In 1 L of xylan liquor, approximately 17.87 g/L of monomeric
xylose and 7.99 g/L of oligomeric xylose were present. As oligomeric xylan could obscure
the initial concentration of xylose and the yield of FuR in the experiments, a degradation
reaction from xylan to xylose was performed. After the reaction, the xylose increased
to 27.15 g/L. Thus, the initial concentration of xylose for the acid catalytic conversion
process was consistently found to be approximately 5.5 g/L. Subsequently, by applying
the optimized variables (reaction temperature of 169 ◦C, catalyst concentration of 1.9 wt.%,
reaction time of 41.2 min) determined through RSM, FuR was produced at a concentration
of 2.34 g/L from an initial xylose concentration of 5.430 g/L.

4. Conclusions

This study was conducted to optimize the production of FuR from liquid xylan
obtained through the pretreatment of raw RH. To efficiently produce a large amount
of FuR, appropriate pretreatment methods and chemical conversion techniques were
considered based on the characteristics of the raw biomass. Delignification pretreatment
using ethanol allowed the separation of significant amounts of xylan and lignin in the
liquor form. Methods for securing xylose from xylan liquor obtained through pretreatment
were proposed, and acid catalytic conversion using sulfuric acid was optimized using RSM.
Finally, strategies to achieve a high FuR yield and selectivity by utilizing the optimized
process variables are discussed in this paper.
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