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Abstract: The numerical analysis for the controllability assessment of a new design nuclear reactor
is typically carried out by means of complex multiphysics codes, solving high fidelity partial differ-
ential equations governing the system neutronics as well as the fluid dynamics. Multiphysics codes
deliver very accurate solutions at the expense of high computational times, which could be of several
hours depending on the specific case study. In this work, to efficiently reduce runtimes, a sensitivity
analysis (SA) is carried out to identify the most important input parameters affecting the solution
of a multiphysics model developed for the controllability assessment of molten salt reactors (MSRs).
The numerical modeling of these innovative systems is fundamental to allow for a safer and more
sustainable power production (e.g., due to the lower radiotoxicity of the actinide inventory in MSRs and
to the possibility of operation at atmospheric pressure). In this paper, four global sensitivity measures
are calculated first, including the Pearson correlation coefficient, δ, Kolmogorov–Smirnov and Kuiper
indices, whose results are aggregated by an ensemble strategy and confirmed by the CUmulative SUm
of NOrmalized Reordered Output (CUSUNORO) plot. The results of the SA point out that the fuel
density is the most important parameter yielding the largest variations in the system reactivity, funda-
mental for guaranteeing the MSR controllability. In light of this result, a simplified, surrogate model is
then developed, which uses density as the only input parameter to determine reactivity, guaranteeing
runtime reductions from several hours to a few seconds and, at the same time, a comparable level
of accuracy of the multiphysics model. This result demonstrates the capability of global sensitivity
analysis approaches to effectively identify the most relevant parameters in MSR systems, supporting
the development of simplified, control-oriented models for these innovative reactors.

Keywords: molten salt reactor (MSR); multiphysics; OpenFOAM; sensitivity analysis

1. Introduction

Molten salt reactors (MSRs) are circulating fuel nuclear reactors in which a mixture
of molten thorium and uranium fluorides acts as fuel and coolant simultaneously [1]. In
recent years, MSRs are gathering a strong interest from the nuclear research community,
due to their intrinsic characteristics of safety and sustainability. Thanks to the high boiling
point of the molten salts, MSRs can be operated at atmospheric pressure. In addition,
the adoption of a closed thorium fuel cycle may lead to an actinide inventory with lower
radiotoxicity. Finally, the adoption of a liquid fuel can potentially allow for a significant
plant simplification (due to the core homogeneity), as well as a greater compactness as
the fission energy is directly released into the coolant [2]. For these reasons, MSRs are
strong candidates for a cleaner, safer, and more sustainable power production. At the
same time, MSRs raise new technical challenges that call for new simulation tools, tailored
to the specificities of these innovative systems. In more detail, compared to traditional
solid-fueled reactors, the circulating fuel is a distinguishing feature of MSRs [3,4], leading

J. Nucl. Eng. 2022, 3, 277–294. https://doi.org/10.3390/jne3040016 https://www.mdpi.com/journal/jne

https://doi.org/10.3390/jne3040016
https://doi.org/10.3390/jne3040016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jne
https://www.mdpi.com
https://orcid.org/0000-0003-1508-5935
https://orcid.org/0000-0001-6659-0953
https://orcid.org/0000-0002-7108-637X
https://doi.org/10.3390/jne3040016
https://www.mdpi.com/journal/jne
https://www.mdpi.com/article/10.3390/jne3040016?type=check_update&version=1


J. Nucl. Eng. 2022, 3 278

to completely new design and related technological challenges. Notably, the delayed
neutron precursors are not spatially static, as in conventional nuclear systems, but they are
dragged by the fuel mixture through the reactor and the external circuits. For this reason,
delayed neutrons can be emitted in peripheral regions of the reactor, where the neutron
importance with respect to reactivity is lower, or even in the external circuit, where they do
not contribute at all to fissions. As a consequence, the coupling between the neutronics and
thermo-fluid dynamics of the system is even stronger than in traditional reactors, since the
fuel velocity field directly influences the precursor distribution.

Multiphysics approaches provide a good way to inherently couple all the physical
phenomena occurring in the reactor in the same simulation environment, offering an effi-
cient way to handle the coupling non-linearities [5]. Multiphysics models of the MSRs have
been developed (Cammi et al. [6,7], Aufiero et al. [8,9], Fiorina et al. [10,11]), coupling the
neutron diffusion equation with a single-phase, incompressible thermal-hydraulics model,
where transport equations for the moving precursors have also been implemented [9].
Furthermore, a Finite Element multiphysics model for MSRs was developed in [12–14],
while de Oliveira et al. proposed a Finite Volume model using the GeN-Foam code [15]. In
addition, capabilities to simulate fuel salt solidification and draining transients in MSRs
were developed by Tano et al. [16,17].

In some MSR designs [1], the injection of helium bubbles is foreseen for the removal
of gaseous fission products. These helium bubbles not only influence reactivity, due to
their negative void coefficient, but also increase the liquid fuel compressibility, which is
expected to have a strong impact on fast, reactivity-driven transients, where the finite
propagation velocity of pressure waves can lead to delays in the expansion reactivity feed-
back [18]. Therefore, careful investigation is needed in order to assess the safety of MSRs,
also considering the presence of gas bubbles inside the reactor. Both the bubble motion and
compressibility effects cannot be described by means of standard single-phase, incompress-
ible thermal-hydraulics models. To address these issues, a multiphysics OpenFOAM solver
has been developed in [19,20], coupling the multi-group neutron diffusion equation with
a two-fluid, or Euler–Euler [21] model for two-phase, compressible thermal-hydraulics,
where the motion of precursors in the liquid fuel is also considered.

These complex multiphysics tools can produce very accurate solutions, being able
to catch phenomena that could not be described with simpler approaches. However, this
accuracy comes at the expense of large computational times, on the order of several hours.

In order to reduce the computational time for a real-time control analysis and decision
support, a surrogate model of the multiphysics model can be beneficial. In this work, sensi-
tivity analysis (SA) methods are first used to identify the most important input parameters
of the multiphysics model, to be used to build a simplified surrogate model of the MSR
behavior. In general, SA methods fall into two categories: local or global. Local sensitivity
approaches like the Tornado diagrams [22] focus on the simulation behavior around cer-
tain reference values of the inputs; global sensitivity methods such as the variance-based
methods [23] allow the inputs to vary in their entire input [24]. It has been shown that the
ensemble of different SA methods can obtain robust and reliable results [25]. In this work,
we ensemble four commonly used global sensitivity methods: Pearson correlation coeffi-
cient, the Borgonovo δ index, the Kolmogorov–Smirnov index, and the Kuiper index [26].
The uncertainty in the estimates is quantified via bootstrapping and the bias-reducing boot-
strap estimates [27]. The results are confirmed by a graphical method called CUSUNORO
plots [28,29]. A local approach for the sensitivity analysis of the MSR was proposed in [30],
based on the adjoint technique. To overcome some of the common drawbacks of local
approaches, a global approach has been applied, for the first time, to study an MSR system.
More specifically, local approaches evaluate the importance of one input parameter at a
time (neglecting interactions), with other inputs being kept constant at their nominal value,
whereas global approaches consider the interactions among all the input parameters and
their variability on their whole support of distribution. Consequently, global approaches
are more appropriate when applied to analyze strongly non-linear systems, such as MSRs,
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whose model input parameters typically interact with each other. In this frame, the paper
aims at filling the gap, by proposing a global sensitivity analysis of a fast-spectrum MSR.

Following the SA, a surrogate model, based on point kinetics equations, is developed, in
which only the most relevant parameters are retained. The purpose of the surrogate model is
to achieve lower computational times than the high-fidelity models, providing a simulation
tool that is suitable for real-time analysis. Regarding the accuracy of the new approach, the
two models are compared, simulating two different accidental transients in an MSR, namely,
the super-prompt-critical reactivity insertion and the loss of heat sink accidents.

Point kinetic models of the MSR were proposed in [31–35]. Furthermore, simplified
models of MSRs were also developed by using other approaches, e.g., 1D system codes [36].
Independently from the specific approach selected to develop the simplified model, this
research aims at demonstrating the suitability of global SA to provide a synthetic overview
of the most relevant parameters to be used for model surrogation. In other words, the
purpose of this work is (i) to identify the most relevant physical parameters affecting MSR
behavior using a global SA approach, (ii) to develop a surrogate MSR model based on
the reduced set of most relevant parameters identified by the sensitivity analysis, and
(iii) demonstrate that this surrogate model is comparable to more complex ones in terms of
accuracy but computationally cheaper. Therefore, the novelty of this work as compared
to state-of-the-art literature is that it proves global SA as an effective tool in support of
the development of simplified, control-oriented models of MSRs, which are suitable for
real-time decision making. It is underlined that, even though point kinetics is selected to
develop the surrogate model in this work, the proposed technique can be flexibly applied
to any other simplified modeling approach, such as 1D system codes.

The remainder of the paper is organized as follows. Section 2 describes the main
features of MSR systems. Section 3 discusses the high-fidelity model. Section 4 presents
the SA methods in use. Section 5 reports the SA results. Then, in Section 6, the surrogate
model is developed, and in Section 7 its results are compared to the high-fidelity model.
Finally, conclusions are provided in Section 8.

2. MSRs

A schematic representation of a fast-spectrum MSR layout is shown in Figure 1 and
the main design parameters are listed in Table 1. The high-fidelity simulations presented in
Section 7 are carried out using the MSR system described in Figure 1 and Table 1. The salt
mixture, which serves simultaneously as fuel and coolant, is circulated through 16 external
circuits, where the power produced by fissions is removed by heat exchangers. The helium
bubbles are injected in the cold legs, at the bottom of the system, and they are removed at
the top, in the hot leg region.
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Table 1. Main design parameter values assumed in this work [1,16].

Parameter Value

Nominal power 3000 MWth
Fuel inlet temperature 923 K
Fuel outlet temperature 1023 K
Total salt volume 18 m3

Fuel composition (mol. %) LiF (77.5)—ThF4 (20.0)—233UF4 (2.5)
Injector diameter 3 mm

3. The Multiphysics High-Fidelity Model

The multiphysics high-fidelity model solves, at each time step, the system thermal-
hydraulics and neutronics in two different cycles, as sketched in Figure 2. The thermal-
hydraulics sub-solver is based on the standard OpenFOAM [37] solver “twoPhaseEulerFoam”
for the compressible fluid and the bubble modeling, whereas neutronics is described by
multi-group neutron diffusion, SP3 and discrete ordinate transport sub-solvers [19,20].
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Figure 2. Logic structure of the multiphysics solver.

The list of the inputs of the multiphysics model, X(X1, . . . , X28) is provided in Table 2,
together with their uncertainty distributions. These uncertainty distributions were deter-
mined by various authors in previous works, as cited in the last column of Table 2.

Table 2. List of the multiphysics model inputs.

Input Parameter Description Ref.

X1 Bubble diameter

A log-normal distribution is adopted in this work as well, as commonly done in literature. With
regards to the support of such distribution, the bubble diameter is typically assumed to lay in
between 1 and 5 mm with most probable values around 3 mm (i.e., for air and water [38–40]) and,
in the case of the Molten Salt Reactor Experiment (MSRE), in between 0.127 and 0.508 mm [41].
For the MSR considered in this work, the diameter of the helium bubbles is taken equal to 3 mm,
i.e., the most probable diameter, since it can be determined by the helium injector diameter (of
3 mm, see Table 1), as supported by analyses carried out in [42], where different bubble diameter
models are compared. In more detail, [42] points out that bubbles injected with 3 mm diameter
remain the same size in the whole reactor, without being significantly affected by bubble
coalescence and break-up. In this respect, it is worth mentioning that, up to now, a helium
bubbling system has never been designed for a fast-spectrum MSR and, therefore, no evidence is
available to support different hypotheses on the actual helium bubbles diameter.
Distribution (*):
X1 = x [mm]
x ∼ Logn(0.83, 0.48)

[38–40]
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Table 2. Cont.

Input Parameter Description Ref.

X2 Surface tension

The surface tension of the salt adopted in this work (77.5% LiF 20.0% ThF4 2.5% 233UF4) has not
been measured yet. A uniform distribution is assumed, that accounts for the uncertainties of
correlations for other fluorides.
For 46.5% LiF, 11.5% NaF, 42% KF (FLiNaK):
X2 = 0.2726 – 1.014·10−4T[K]
±2% of uncertainty.
Valid for the temperature range T = (770–1040) K.
For 33% LiF, 67% BeF2 (FLiBe):
X2 = 0.295778 – 0.12·10−3T[K]
±3% of uncertainty.
Valid for the temperature range T = (773.15–1073.15) K.
Distribution:
X2 = x [N m]
x ∼ U(0.15, 0.19)

[43]

X3, X4 Fuel density

ρ = X3 − X4·T[K] where:
X3 = 4983
X4 = 0.882
±0.9% of error.
Distribution (**):
X3 = 4983·(1 + 0.01x)

[
kg m−3

]
x ∼ N(0, 0.547)
X4 = 0.882·(1 + 0.01x)

[
kg m−3K−1]

x ∼ N(0, 0.547)

[44,45]

X5, X6 Fuel specific heat

cp = X5 − X6·T[K] where:
X5 = −1.111
X6 = 0.00278
±10% of error.
Distribution (**):
X5 = −1111·(1 + 0.01x)

[
J kg−1K−1]

x ∼ N(0, 6.08)
X6 = 0.00278·(1 + 0.01x)

[
J kg−1K−2]

x ∼ N(0, 6.08)

[44,45]

X7, X8 Fuel thermal conductivity

k = X7 − X8·T[K] where:
X7 = 0.928
X8 = 8.397·10−5

±5% of experimental error.
Distribution (**):
X7 = 0.928·(1 + 0.01x)

[
W m−1K−1]

x ∼ N(0, 3.04)
X8 = 8.397·10−5·(1 + 0.01x)

[
W m−1K−2]

x ∼ N(0, 3.04)

[44,45]

X9 Fuel kinematic viscosity

X9 = 5.54·10−8 exp
(

3689
T[K]

)
±5% of experimental error.
Distribution (**):
X9 = 5.54·10−8 exp

(
3689
T[K]

)
·(1 + 0.01x)

[
m2s−1

]
x ∼ N(0, 3.04)

[44,45]

X10 to X28 All neutronics parameters Normally distributed. Mean and standard deviation evaluated with Serpent (***) See box below
for details

(*) The log-normal parameters µ and σ are determined so that the most probable bubble diameter value is 3 mm
and 90% of the samplings fall into the 1–5 mm range. (**) The normal parameters µ and σ are determined so that
µ is equal to the nominal value of the parameter and that 90% of the samplings fall within the experimental error.
(***) The neutronics parameters are: -Cross sections (diffusion coefficient, fission XS times neutrons per fission,
fission XS times fission power, absorption each described by a constant reference value and by a temperature
coefficient): X10 to X17; -Delayed neutron fractions (from group 1 to 8): X18 to X25; -Decay heat power fractions
(from group 1 to 3): X26 to X28. Uncertainties on nuclear data are calculated with the Serpent Monte Carlo code
[46], using 100 million neutron histories and obtaining a 5 pcm 1-σ uncertainty on the multiplication factor. The
JEFF-3.1.1 nuclear data library [47] is selected, which divides delayed neutron precursors into eight groups. On
the other hand, three groups are adopted for decay heat precursors, based on results obtained by Aufiero et al.
in [9]. For more detail on the Serpent model adopted in this work, the reader is referred to [19].

The thermal-hydraulics solver, fed with the thermal-hydraulics inputs X1 to X9, finds
the phase fractions, the velocity of both phases, pressure, and temperature. Picard iterations
are performed until convergence is reached for the solution of the thermal-hydraulic part
of the problem. Then, the neutronics solver, fed with the neutronics inputs X10 to X28,
finds the flux, the delayed neutron precursors, and the decay heat. Once the flux (and the
fission power in turn) and the decay heat are known, the volumetric power source field is
updated and the energy equation is solved again (for this reason, the thermal-hydraulics
inputs X1 to X9 are also provided to the neutronics solver). Once the new temperature
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and density fields of the fuel are calculated, the cross sections are updated and the cycle is
repeated with Picard iterations until convergence is reached. In addition, a certain number
of external iterations between the thermal-hydraulics and the neutronics sub-solvers is
performed. In more detail, the temperature T and the fuel density ρ(X3, X4), calculated
by the thermal-hydraulics solver, are passed to the neutronics cycle, whereas the fission
power

.
Q f ission(X1, . . . , X28), calculated by the neutronics solver, is passed to the thermal-

hydraulics cycle. The external iterations are particularly important in fast transients, in
which the large thermal expansions due to steep power excursions have a strong impact on
the fuel velocity field.

This model can be used in two different modes:

1. A time-independent, criticality mode, in which the system multiplication factor is
evaluated at steady-state conditions. To this aim, a power iteration routine, based on
the k-eigenvalue method [48] is implemented into the neutronics module. In this case,
the main output is represented by the multiplication factor.

2. A time-dependent mode, for the analysis of operational as well as accidental transients.
The main output provided by the transient mode is the reactor thermal power.

In both cases, the temperature and velocity fields of the fuel and of the gas bubbles,
the void fraction distribution, the pressure fields, and the precursor density distributions
are provided as output.

More details on the thermal-hydraulics and neutron diffusion modules are provided
in the following sections.

3.1. The Thermal-Hydraulics Model

The need for a two-phase thermal-hydraulics solver is due to the presence of gaseous
fission products inside the reactor. To this aim, the “twoPhaseEulerFoam” solver available
in the OpenFOAM library is used, which implements a Euler–Euler approach [21]. Each
phase is treated as a continuum interpenetrating each other and is described with averaged
conservation equations. Due to the averaging process, phase fractions are introduced into
the governing equations.

The “twoPhaseEulerFoam” solver is selected since it is well established in the Open-
FOAM community and widely validated for a broad range of applications, spacing from
turbulent, multiphase flows to boiling flows, chemical engineering and pharmaceutical
applications, and powder technology applications. For a detailed overview, the reader is
referred to [42].

Compared to other approaches for bubbly flows (e.g., Lagrangian–Lagrangian and
Eulerian–Lagrangian), the Euler–Euler approach is characterized by lower computational
requirements, and therefore is suitable for the simulation of high-Reynolds and large-scale
systems, which is the case for the MSFR. In fact, considering an average fuel density of
4125 kg/m3, an average fuel velocity of about 1.2 m/s, a diameter of 2.26 m, and a dynamic
viscosity of 10−2 Pa s [1], the Reynolds number is in the order of 106, implying a fully
turbulent flow regime. For these reasons, the Euler–Euler approach is the preferred method
for many practical applications and is adopted also in this work. Furthermore, the adoption
of a Euler–Euler approach is compatible with the gas fractions expected in fast-spectrum
MSRs implementing helium bubbling for fission gas removal, typically in the order of
1% [18–20].

The mass and momentum conservation equations for the two phases read:

∂(ρj(X3,X4)αj)
∂t +∇·

(
ρj(X3, X4)αjuj

)
= Sj j = f uel, gas

∂ρj(X3,X4)αjuj
∂t +∇·

(
ρj(X3, X4)αjujuj

)
=

∇·αj

[
−pI + (µ(X3, X4, X9) + µt(X3, X4, X9))

(
∇u + (∇u)T

)
− 2

3 µ(X3, X4, X9)(∇·u)I
]

+Mj(X1, X3, X4, X9)

(1)
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A mass source term Sj is considered in the continuity equation to model gas injection
and extraction in the reactor. The term Mj appears in the averaged momentum equations
of each phase due to non-linearity, which requires closure equations. This term considers
the momentum transfer between the two phases, due to the forces acting at the liquid–gas
interface, namely the lift, the drag, virtual mass forces, and turbulent dispersions. Several
models are implemented into the solver to describe the inter-phase terms and to close the
momentum equation [49,50]. These closure models usually depend on the bubble diameter,
which is sampled as described in Table 2.

The energy equations for the two-phases for the “twoPhaseEulerFoam” read:

∂ρj(X3,X4)αjhj
∂t +∇·

(
ρj(X3, X4)αjujhj

)
+

∂ρj(X3,X4)αjkj
∂t +∇·

(
ρj(X3, X4)αjujk j

)
= αj

∂p
∂t +

αj
ρj(X3,X4)Cp,j(X5,X6)

∇·
(
(K(X7, X8) + Kt(X7, X8))∇hj

)
+ L(X1, X3, X4, X9)∆T

+ρj(X3, X4)αjg·uj + Q f (X14, X15) + Qh(X16, X17, X26, X27, X28)

(2)

where L is an inter-phase heat transfer coefficient resulting from the averaging process
and ∆T is the temperature difference between the two phases. Also in this case, different
models are implemented in the solver and can be chosen to describe L, closing the energy
equation [51]. In addition, the Lahey k-ε turbulence model [52] was adopted to account for
the contribution of the dispersed gaseous phase on eddy viscosity.

3.2. The Neutronics Model

The one-speed formulation of the diffusion equation is adopted in this work:

1
v

∂ϕ

∂t
= ∇·D(X10, X11)∇ϕ− Σa(X16, X17)ϕ + Sn(1− β(X18, . . . , X25)) + Sd (3)

Note that the neutron velocity v is not sampled, since its relative uncertainty is nearly
zero, and therefore negligible compared to those of the cross sections and of the diffusion
coefficient. The macroscopic cross sections are evaluated by assuming a logarithmic depen-
dence on temperature and a linear dependence on density and on the void fraction due to
the helium bubbles, according to the following relation:

Σ =
[
Σo(Xi) + A

(
Xj
)
log

Tf uel
Tre f

]
ρ f uel(X3,X4)

ρre f
(1− αb)

where
(
Xi, Xj

)
= (X12, X13), (X14, X15), (X16, X17)

(4)

with ρre f , f uel = 4125 kg/m3. The reference term Σo(Xi) is a group-constant cross section
evaluated by Monte Carlo simulation at reference temperature Tre f and density ρre f , while
A
(
Xj
)

is calculated by logarithmic interpolation of two cross sections values, obtained at
Tre f and at a different temperature (always by Monte Carlo simulation). The suitability of
Equation (4) to account for temperature and density feedback on macroscopic cross sections
has been verified in [19,20] and validated in [53].

The diffusion coefficient is evaluated with a similar expression:

D =

[
Do(X10) + AD(X11)log

Tf uel

Tre f

]
ρ f uel(X3, X4)

ρre f , f uel
(1− αb) (5)

The source terms represent the fission neutrons, the scattering neutrons, and the
delayed neutrons, respectively, and are evaluated as follows:

Sn = νΣ f ,j(X12, X13)ϕ (6)

Sd = ∑
k

λkck (7)
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Due to these explicit terms, an iterative procedure among the several groups is required
to achieve convergence for the neutronics description. Albedo boundary conditions are
adopted at the top and bottom walls of the reactor (axial reflectors) and at the radial wall
(blanket salt), in order to limit the domain of the equation set of neutronics to the fuel salt
circuit only [8,54].

The precursor balance equations include the diffusion and the transport term to allow
for the fuel motion (neglecting the precursor mass transfer from the liquid to the gas phase):

∂ρl(X3,X4)αlck
∂t +∇·(ρl(X3, X4)αlulck)

= ∇·
(

ρl(X3, X4)αl

(
ν(X9)

Sc + νT(X9)
ScT

)
∇ck

)
+βk(Xk)∑

i
νΣ f ,i(X12, X13)ϕi − λkρl(X3, X4)αlck

where Xk= X18, . . . , X25

(8)

The turbulent Schmidt number ScT is set to 0.85, even if no data are specifically
available for the diffusion of species in the MSR salt [8].

In order to properly consider the decay heat during accidental transients, the solver
is provided with equations that consider the behavior of the isotopes responsible for the
decay heat, subdivided in “decay heat groups” in a manner similar to the precursor groups.
Actually, the equations implement the balance for the precursor concentration multiplied
by the average energy released by that decay group:

∂ρl(X3,X4)αldm
∂t +∇·(ρl(X3, X4)αluldm)

= ∇·
(

ρl(X3, X4)αl

(
ν(X9)

Sc + νt(X9)
Sct

)
∇dm

)
+βh,m(Xr)∑

i
E f Σ f ,i(X14, X15)ϕi − λh,lρl(X3, X4)αldm

where Xr = X26, . . . , X28

(9)

where, again, the decay constants λh,l are fixed and do not need to be sampled. The decay
heat is of interest for a more accurate evaluation of power density and of temperature
evolution during transients. It is assumed that the decay heat is deposited in situ (i.e.,
where the corresponding precursors decay) without considering photon transport.

In addition, a power iteration routine, based on the k-eigenvalue method [48], is
implemented in the neutronics module of the solver for the calculation of the multiplication
factor.

4. Global SA Methods

In global SA, the model inputs X = (X1, . . . , Xk) ∈ Rk are considered as random vari-
ables following certain probabilistic distribution. The uncertainty in the inputs propagates
through the model to the output so that the output Y (i.e., the multiplication factor) is also
a random variable. To identify the most important input parameters affecting the output
Y, the degree of statistical dependence between Y and Xi, i = 1 . . . k is of concern. The
stronger the statistical dependence, the more important we consider the corresponding
parameter. Global sensitivity measures are developed to measure the statistical dependence.
For example, the Pearson correlation coefficient ρY,Xi

(or Pearson product-moment correlation
coefficient) is defined as [55]:

ρY,Xi
=

Cov(Y, Xi)

σYσXi

(10)

where Cov(Y, Xi) denotes the covariance between Y and Xi, σY and σXi are the corre-
sponding standard deviations, whereas the moment-independent Borgonovo δ index,
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Kolmogorov–Smirnov (KS) index βKS
i ·, and Kuiper (KU) index βKU

i are provided in Equa-
tions (11)–(13), respectively [26]:

δi = EXi

[∫ ∣∣∣ fY(y)− fY|Xi=xi
(y)
∣∣∣dy
]

(11)

βKS
i = EXi

[
sup
Y

∣∣∣FY(y)− FY|Xi=xi
(y)
∣∣∣] (12)

βKU
i = EXi

[
sup
Y

(
FY(y)− FY|Xi=xi

(y)
)
+ sup
Y

(
FY|Xi=xi

(y)− FY(y)
)]

(13)

where the marginal cumulative distribution function (cdf) and density function (pdf) of
Xi are denoted by FXi and fXi , and the cdf and pdf of the model output by FY and fY,
respectively.

To keep the computational burden under control, we use a given-data approach to esti-
mate the above sensitivity indices (ρY,Xi , δi, βKS

i , βKU
i ) [26]. For quantifying the uncertainty

in the estimates, the ensemble-based approach proposed in [25] is adopted. Specifically,
we ensemble the rankings of ρY,Xi , δi, βKS

i , βKU
i by considering their sum aggregation Rsum,

i.e., the ranking of the sum aggregation is calculated by first taking the sum of the rank-
ing positions of each sensitivity index, then sorting the input parameters according to
corresponding Rsum,i.

The results are confirmed by a graphical visualization tool called the CUSUNORO
plot [28,29]. The CUSUNORO curve for a parameter Xi at its quantile u ∈ [0, 1] is given by:

ci(u) =
u√

V[Y]
E
[
Y− E[Y]

∣∣∣Xi ≤ F−1
Xi

]
=

1√
V[Y]

F−1
Xi

(u)∫
−∞

E[Y− E[Y]|Xi = x]dx, i = 1 . . . k (14)

The curve ci(u) shows the average change in the standardized output to the mean
when the associated input parameter changes to a given quantile u. If the corresponding
parameter has a significant effect on the model output, the curve ci(u) has large dispersion
from the zero-horizontal line at any u. One can also obtain the monotonicity information of
the corresponding Xi from the CUSUNORO plot.

5. SA Results

The SA methods introduced in Section 4 were applied to analyze the MSR model,
using a Monte Carlo sample of size n = 50. We used the given-data principle to estimate
the Pearson correlation coefficient, Borgonovo δ, KS and KU indices. The bias-reducing
bootstrap estimation scheme was used to obtain the error bands.

Figure 3 shows boxplots of bootstrap estimates of the four global sensitivity measures,
with the bootstrap size of 100. All four indices rank the fuel density parameters X4 and
X3 as the most important input parameters; the fuel density parameters are significantly
more important than the others, as indicated by their higher sensitivity estimates that are
non-overlapping with the others. The boxplots also suggest that the remaining inputs,
except for the fuel density parameters, have limited effects on the output reactor power,
and their ranking is not clear.

Table 3 shows the ranking obtained by the bootstrap mean of ρY,Xi , δi, βKS
i , βKU

i , to-
gether with the sum ensemble ranking Rsum,i. Again, the fuel density parameters X4 and
X3 are ranked as the first and the second, followed by the neutronics parameter X20, the
mean bubble diameter X1, and the neutronics parameter X15.

The CUSUNORO plot in Figure 4 is obtained using the same dataset, where each curve
refers to an input parameter. The magnitudes of the deviations from the zero horizontal line
can be used to infer information about the strength of the impact. The CUSUNORO plot
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shows a clear agreement with the previous results: the fuel density parameters X4 (blue -o-)
and X3 (red -∆-) are significantly more important than the others.
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Table 3. Input variable ranking obtained with n = 50 MSR runs.

Sensitivity Measure/Rank 1st 2nd 3rd 4th

Pearson correlation coefficient, ηi 3 4 11 1

Borgonovo δ index, δi 4 3 20 1

KS index, βKS
i 4 3 20 15

KU index, βKu
i 4 3 20 15

Ensemble Rsum 4 3 20 1 or 15

Furthermore, curves above the horizontal zero line signal a decreasing effect; curves
below the horizontal zero line suggest the opposite. From Figure 4, one observes that X4
has a decreasing effect on the output reactor power, whereas X3 shows an increasing effect.

6. The Surrogate Model

The high-fidelity multiphysics model presented in Section 3 can produce very accu-
rate solutions, being able to catch phenomena that could not be described with simpler
approaches. However, this accuracy comes at the expense of large computational times,
which can be as high as about 24 h in three-dimensional full core simulations. Due to
this drawback, the high-fidelity model is not adequate for real-time control and decision
support. To overcome this issue, a simplified surrogate model is developed in Matlab®,
suitable for the real time analysis of the MSR.

As pointed out by the SA results in Section 5, the effect of the density parameters on
reactivity are far more important than all the other model parameters. In the light of this, a
surrogate model is developed, only considering the density feedback on reactivity.

Point kinetics equations [56] are selected for the estimation of the fission power. In
order to simplify the model as much as possible, only one group is considered for the
delayed neutron precursors:

dψ

dt
=

ρ̃− βe f f

Λ
ψ +

βe f f

Λ
η (15)

dη

dt
= λψ− λη (16)

where ψ and η are the fission power and the precursor density, normalized to their initial
values [57]:

ψ =
P

Pt=0
(17)

η =
c

ct=0
(18)

The effective delayed neutron fraction is evaluated by [9] and it accounts for the fact
that, due to the fuel motion, some of the precursors decay outside of the reactor, where they
do not contribute to the fission chain reactor. The other kinetics parameters are obtained
by means of Monte Carlo simulation. The density feedback on reactivity is described by
means of the following relation:

ρ̃ = ρ̃ext + αρ(ρ− ρt=0) (19)

where the density feedback coefficient is evaluated by Monte Carlo simulation. The Doppler
reactivity feedback and leakage effects are not included on purpose, to demonstrate that
the density feedback alone is able to correctly reproduce transients, as suggested by the
results of the global sensitivity analysis (which points out that density is the most relevant
parameter affecting reactivity).
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On the other hand, thermal-hydraulics is described by means of the following equation:

mcp
dT
dt

= ψPt=0 − Γcp(Tout − Tin) (20)

where T, Tin, and Tout are the average, the inlet, and the outlet fuel temperatures, respec-
tively. Assuming for simplicity that:

T =
Tin + Tout

2
(21)

Equation (20) can be rewritten as follows:

d
(
ρVcpT

)
dt

= ψPt=0 − 2ρΓcp(T − Tin) (22)

All the parameters appearing in Equations (15) to (22) are listed in Table 4. The
effective delayed neutron fraction βe f f is calculated in [8] and accounts for precursor
transport within the liquid fuel, while the other neutronics parameters are calculated by
Monte Carlo simulation. The thermophysical properties and flow parameters can be found
in [1,16]. Note that none of these parameters are among the 28 Xi listed in Table 2. Their
nominal values are used to define the initial conditions of the system, whereas transients
are evaluated considering only the density variations, which are described by the following
equation:

ρ = X3 + X4 T[K] = 4983− 0.882 T[K] (23)

Table 4. Input parameter values adopted in the surrogate model [1,8,16].

Parameter Symbol Value Unit

Effective delayed neutron fraction βe f f 146 Pcm

Precursor decay constant λ 0.317 s−1

Mean neutron generation time Λ 1.147 µs

Density reactivity coefficient αρ 7.85 pcm m3 kg−1

Fuel inlet temperature Tin 923 (steady state) K

Reactor volume V 9 m3

Fuel specific heat (at T = 900 K) cp 1391 J kg−1 K−1

Initial power Pt=0 3000 MW

Nominal volumetric flow rate Γ 4.5 m3 s−1

Therefore, the density coefficients X3 and X4 are the only two parameters retained
from the high-fidelity model. Thanks to these parameters, density variations throughout
the transient can be evaluated, which in turn are used to evaluate reactivity by means of
Equation (17).

7. Comparison between the Surrogate and High-Fidelity Models

In this section, the surrogate model developed in Section 6 is tested against the high-
fidelity multiphysics model. To this aim, two case studies are analyzed: a super-prompt-
critical 500 pcm reactivity insertion, starting from zero power, and a loss-of-heat-sink
accident. Due to strong nonlinearity, these transients constitute a tough test set to verify
the surrogate model. Additionally, the selected case studies are of great interest from an
engineering point of view, representing accidental scenarios that could take place in MSRs.
Please note that the high-fidelity simulations are carried out using the geometry presented
in Figure 1.
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7.1. Super-Prompt-Critical Reactivity Insertion

In this section, the accidental super-prompt-critical reactivity insertion is studied. The
initial fuel temperature is equal to 900 K. Zero power is approximated with an initial power
of 3 MW; in addition, zero void fraction is assumed during the transient. It is also assumed
that the heat exchanger secondary temperature is equal to Tin = 923 K and that perfect
heat transfer takes places between the primary and secondary loops. In this way, Tin does
not change with time. This simplifying assumption is made in both the high-fidelity and
surrogate calculations, so that results are coherent each with the other. This assumption
allows for simpler modeling of the heat exchanger, avoiding accounting for the secondary
loop. At the same time, this simplification is not expected to significantly affect the accuracy
of results, since the transient characteristic time (few milliseconds) is much lower than the
fuel recirculation time (around 4 s [45]).

In Figure 5, the power excursions resulting from the reactivity insertion evaluated by
the multiphysics solver is plotted with a blue line, whereas the surrogate model results are
in green. Compared to the multiphysics model, the surrogate model correctly describes
the system dynamics, well predicting both the height as well as the shape of the power
excursion. In more detail, the peak power predicted by the two curves only differs by 8%.
The surrogate model curve shows a slight delay (~0.7 ms) with respect to the high-fidelity
model. It is underlined that the macroscopic effect of the transient on the reactor is more
determined by the peak power, rather than by the time delay between the two curves. In
this regard, the surrogate model can accurately predict the peak power, thus, constituting a
useful tool for the analysis of these reactivity-driven accidental transients.
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Concerning runtimes, the high-fidelity simulation is carried out in about 10 h on a
cluster, using a 2 × 24-core Intel Xeon 8160 CPU, whereas the surrogate model requires less
than one second on a laptop with an Intel i7-6700HQ CPU. Therefore, the computational
burden reduction is clear, at the expense of slightly less accurate results.

7.2. Loss of Heat Sink

In this section the loss-of-heat-sink accident is studied. The accident is modeled
as a sudden drop to zero of the heat transfer coefficient in the heat exchanger. As the
initial condition, the reactor is considered at nominal power (3000 MW) and operating
temperature (973 K). The time evolution of the core power following the accident is plotted
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in Figure 6. Due to the absence of cooling, the inlet temperature Tin is time dependent and
always equal to the outlet (and average) temperature.
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The multiphysics and surrogate model predictions are in good agreement, only differ-
ing by a delay (~1 s) in the first part of the transient. This is because in the high-fidelity
model the fuel takes a finite time to circulate through the primary loop, thus, delaying
the density feedback on reactivity. Indeed, the recirculation time is 4 s [45], and the fuel
takes about 1 s to move from the heat exchanger to the reactor cold leg. This effect cannot
be observed when simulating the accident using the surrogate model (since the model is
zero-dimensional), thus, explaining the 1 s delay between the two simulations. This small
discrepancy, however, is not expected to have a macroscopic effect on the reactor during
the accidental transient.

The high-fidelity simulation takes about 2 h on a cluster, using a 2× 18-core Intel Xeon
8160 CPU, whereas the surrogate model requires less than one second on a laptop with
an Intel i7-6700HQ CPU. Again, the adoption of the surrogate model allows for a strong
reduction of runtime while preserving accuracy.

8. Conclusions

The analysis of MSRs is typically carried out by means of complex multiphysics tools,
coupling neutronics, thermal-hydraulics, and precursor transport in the same simulation
environments. These high-fidelity models can provide a very accurate solution, since they
are able to describe physical phenomena that could not be caught by simpler approaches.
However, their high computational requirements hinder their application for real-time
control and decision support.

To overcome this issue, an SA was carried out on a multiphysics model coupling multi-
group neutron diffusion equations with a two-phase, compressible thermal-hydraulics
solver for MSR reactivity control. The SA results showed that, among all the model
parameters, density is by far the one affecting the reactivity the most. In light of this, a
surrogate model was developed, based on point kinetics equations, in which the reactivity
feedback depends solely on the fuel density.

The surrogate model was, then, tested against the high-fidelity one, using the simula-
tions of two different accidental transients in an MSR, namely, the super-prompt-critical
reactivity insertion and the loss of heat sink accidents. The results point out that the two
approaches yield very similar results, in terms of accuracy. However, the surrogate model
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runtimes are four orders of magnitude lower, compared to the high-fidelity ones, making it
suitable for real time analysis. In particular, the surrogate model can be useful for control
purposes, allowing for fast estimations of fission power variations resulting from reactivity
insertions or changes in important design parameters such as the fuel temperature or the
fuel flow rate. Even though point kinetics were selected to develop the surrogate model, it is
worth noting that the proposed technique can be applied to any other simplified modeling
approach (e.g., to a 1D system code).

The results of this research point out that global sensitivity analysis approaches are an
effective tool to support the development of simplified models of MSR systems, thanks to
their ability to identify the most relevant physical parameters. Due to their simplicity, these
models can be employed for control purposes, unlike more complex high-fidelity models
whose computational requirements are too high to be used for real-time decision-making.
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Nomenclature

Latin symbols
c Delayed neutron precursor density, m−3

D Neutron diffusion coefficient, m
d Decay heat precursor density, W m−3

h Specific enthalpy, J kg−1

K Modified thermal diffusivity, J m−1 s−1 K−1

k Specific kinetic energy, J kg−1

ke f f Effective multiplication factor, −
L Inter-phase heat transfer coefficient, W m−3 K
M Inter-phase momentum transfer, kg m−2 s−2

p Pressure, Pa
pcm per cent mille (=105)
Q Power source density, W m−3

S Mass source, kg m−3 s−1

t Time, s
u Velocity, m s−1

v Neutron velocity, m s−1

Greek symbols
α Gas fraction, −
β Delayed neutron precursor fraction, −
βh Decay heat energy fraction, −
∆T Inter-phase temperature difference, K
λ Delayed neutron precursor decay constant, s−1

λh Decay heat precursor decay constant, s−1

µ Dynamic viscosity, Pa s
ν Kinematic viscosity, m2 s-1

ν Mean neutrons per fission, −
ρ Density, kg m−3

∑ Macroscopic cross section, m−2

ϕ Neutron flux (diffusion equation), m−2 s−1
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Subscripts–superscripts
a Absorption
b Bubble
d Delayed
f Fission
h Decay heat
i Neutron energy group
j Phase
k Delayed neutron precursor group
l Liquid
m Decay heat precursor group
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