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Abstract: Neural networks require a large quantity of training spectra and detector responses in
order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to
the under-determined nature of unfolding, non-physical spectra which would not be encountered
in usage should not be included in the training set. While physically realistic training spectra
are commonly determined experimentally or generated through Monte Carlo simulation, this can
become prohibitively expensive when considering the quantity of spectra needed to effectively
train an unfolding network. In this paper, we present three algorithms for the generation of large
quantities of realistic and physically motivated neutron energy spectra. Using an IAEA compendium
of 251 spectra, we compare the unfolding performance of neural networks trained on spectra from
these algorithms, when unfolding real-world spectra, to two baselines. We also investigate general
methods for evaluating the performance of and optimizing feature engineering algorithms.

Keywords: detector response unfolding; neutron spectrum unfolding; machine learning; neural
network; feature engineering

1. Introduction

Accurate measurements for the energy spectrum of a neutron radiation source are
important across widely-ranging applications, such as monitoring workplace radiation
exposure, medical imaging, and tracking rates of nuclear reactions for fission or fusion.
In many ways, neutron energy spectra act as fingerprints to identify the nuclear composition
of a given neutron radiation source. Thus, these measurements are also crucial in national
security applications such as detecting the smuggling of illicit nuclear materials or nuclear
warhead treaty verification [1,2].

There are several radiation detection methods used to determine the energy spectrum
of a neutron radiation source, including Bonner sphere detectors [3,4] and scintillation
detectors [5–7]. Almost all neutron detectors, however, involve the use of materials with
characteristic responses to radiation which preserve information about the energy of the
incoming radiation. That characteristic response does not directly contain the energy
information; in order to determine the incident neutron energy spectrum, this response
must first be processed by spectrum unfolding algorithms.

Unfolding algorithms rely on the ability to construct a linear transformation, known as
the detector response function, which gives a mapping between neutron energy spectra and
the corresponding measured characteristic detector responses. This linear transformation
is generally determined explicitly through experiment, or by using Monte Carlo radiation
transport codes [6,8,9] such as Geant4 [10] and MCNP [11]. The act of unfolding thus
involves inverting this linear transformation in order to determine the neutron energy
spectrum which is most likely to have given rise to a known detector response. Since
the number of detector response bins is usually less than the number of energy bins to
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be unfolded, attempting to directly invert the detector response function would yield an
under-determined system of linear equations with potentially infinite solutions. Thus,
to unfold the correct neutron energy spectra from a given detector response, constraints
must be placed on the possible solution space to filter out extraneous and non-physical
solution spectra.

Many commonly used unfolding algorithms employ iterative methods [4,7,12] to
converge on the unfolded spectrum, given some a priori guess of the solution spectrum.
The constraints are usually baked into iterative unfolding algorithms—often through initial-
izing the iteration from a realistic-looking neutron energy spectrum or by only considering
neutron energy spectra which follow from theoretical models [12]. However, iterative
methods can become prohibitively computationally expensive for fine energy bin structure
or when unfolding must be performed in situ, i.e., when a priori knowledge is for some
reason not available.

More recently, neural network based unfolding algorithms have been explored [4,13,14].
Neural networks have the advantage that, once trained, they are extremely quick to evaluate
on any input detector response regardless of the size of the network or the number of energy
bins to be unfolded. However, the accuracy and generalizability of a neural network is
dependent upon the quantity of data used to train it. In addition, the under-determined
nature of neutron spectrum unfolding means that no single function exists, which an
unfolding network can learn to approximate, that will reliably unfold the correct neutron
energy spectra for all possible detector responses.

Including non-physical spectra within a training set may potentially decrease unfold-
ing performance by forcing an unfolding network to learn mappings between detector
responses and spectra which would never arise in the real world. However, by restricting
the types of neutron energy spectra which an unfolding network has been trained on,
one may constrain the solution space through exposure to only physical spectra. Thus,
there are two key considerations for effectively training an unfolding neural network: first,
for the purposes of generalizability a network should be trained on a sufficiently large
quantity of diverse spectra. Second, these training spectra should only come from within
the distribution of spectra likely to be seen in usage.

This is an essential problem in the application of neural networks to spectrum
unfolding—how should one quickly obtain large training sets, which contain only spectra
which could be found in the field? Due to the quantity of spectra required, it is prohibitively
expensive to train networks on energy spectra and detector responses which have been
determined experimentally. Instead, it is common to use Monte Carlo simulations to cal-
culate realistic neutron energy spectra using common neutron source types, such as 252Cf
and Am-Be, in combination with a variety of moderator materials and geometries [3,5].
However, performing these simulations can be computationally demanding given the
several hundred or more training spectra needed by neural networks. Regardless of the
detector type or neural network architecture used, it is desirable to be able to generate a
large quantity of realistic neutron energy spectra without the need for explicit simulation
or measurement.

In this paper, we investigate this problem through the use of algorithms for automatic
training data generation. The goal of this work is to outline spectra generation algorithms
which optimally constrain the types of neutron energy spectra an unfolding neural network
is exposed to during training, and thus improve unfolding performance on real-world
neutron energy spectra. The tested generation methods include random spectra, random
perturbations from real-world spectra, superpositions of random Gaussians, and random
perturbations from a parameterized representation of common kinds of neutron energy
spectra. We test these methods using open data (in particular Bonner sphere detector
response and corresponding neutron spectra) [8] with which readers can validate our
approach and test their own.
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2. Materials and Methods

To evaluate the effectiveness of a neutron energy spectra generation algorithm, a data
set of real-world neutron energy spectra was needed on which to test unfolding perfor-
mance. For this work, we used an IAEA technical report [8] containing 251 measured
and simulated neutron energy spectra which range from 0.001 eV to 15.8 MeV. All 251
spectra are plotted in Figure 1, and the kinds of spectra present in this set are shown in
Table 1. These spectra cover a wide range of applications that include calibration sources,
evaporation fields, cosmic ray background, and reactor spectra. Our neural networks seek
optimal performance on this wide variety of spectra, but we believe these methods would
be applicable to constrained neutron energy ranges as well. This report also contains a fully
solved Bonner sphere detector response matrix (Figure 2), with which we may calculate an
expected detector response given any discretized neutron energy spectrum:

di = ∑
j

Rij φ(Ej). (1)

Here, di is the expected response of the ith Bonner sphere; R is the detector response
matrix, which characterizes the response of the ith Bonner sphere to neutrons in the jth
energy bin Ej; and φ(E) is the neutron energy spectrum. Neutron energy spectra are always
normalized to unity:

∑
j

φ(Ej) = 1. (2)

Figure 1. All 251 real-world neutron energy spectra provided by the IAEA technical report [8] plotted
on top of each other.

Figure 2. The IAEA Bonner sphere response function for 15 different moderator thicknesses (in
inches).
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Table 1. The kinds of neutron energy spectra present in the IAEA data set are shown in column 1.
The number of spectra for each kind is shown in column 2, and the number of spectra present in the
62 IAEA spectra designated for use by the PSA algorithm (Section 2.2.1) is shown in column 3.

Spectra Kind Number Present Number Used by PSA

reference 11 2
moderated reference 13 4

fission 102 30
moderated fission 12 4

workplace 27 6
fusion 4 1

high energy 17 4
accelerator 47 7
cosmic ray 5 1

boron therapy 13 3

2.1. Unfolding Neural Network Architecture

For this paper, the unfolding neural network used is a densely-connected network
with two hidden layers. Both hidden layers use the leaky rectified linear unit (Leaky ReLU)
activation function, and the final layer uses a linear activation function. Leaky ReLU was
chosen over other activation functions such as sigmoid and ReLU, as we found that Leaky
ReLU hidden layers yielded the smallest mean squared and mean absolute unfolding
errors for this specific unfolding problem. Dropout layers are placed between every pair
of densely connected layers in the hope that they will prevent over-fitting and improve
unfolding generalizability [15].

The tunable hyper-parameters of the network include the training batch size, the slope
of the Leaky ReLU activation function, the neuron dropout rate, and the number of neurons
in each hidden layer. Optimal hyper-parameters were determined through Bayesian hyper-
parameter tuning [16]. This hyper-parameter tuning was performed against the IAEA
spectra, however these hyper-parameters are used for all neural networks throughout this
work regardless of the training data used. This was done to ensure consistency in the
complexity of the unfolding network so that differences in unfolding performance may be
primarily attributed to the quality of the training data. All networks will have identical
architecture, but the weights and biases of each layer which are determined from back
propagation depend entirely upon the training set used.

2.2. Random Neutron Spectra Generation Algorithms
2.2.1. Baseline Methods: Perturbed IAEA Spectra (PSA) and Random Spectra (RAND)

We select baseline neutron energy spectra generation algorithms in order to evaluate
the effectiveness of our other spectra generation algorithms. The first algorithm uses
random spectra (RAND) where each energy bin is given a random value between 0 and 1.
Then, the entire spectrum is properly normalized according to Equation (2). Because this
method places zero constraints on the types of neutron energy spectra our neural network
will be exposed to during training it will be used as a baseline to evaluate the effectiveness
of non-physical training data. Example random spectra are shown in Figure 3.

We would also like to be able to approximate a near-perfectly constrained solution
space. While we could train directly on IAEA spectra, the 251 spectra contained in the IAEA
report are not enough to effectively train an unfolding network on—we were unable to get
performance comparable to our other unfolding networks using a 80-20 training-validation
split of only IAEA spectra. Instead, perturbations were performed on a random subset of
25% of the 251 IAEA spectra—this technique will be referred to as the perturbed spectra
algorithm (PSA). This was done so that the remaining 75% of the IAEA spectra may be
quarantined and used only for final analysis. Since this method is only capable of producing
neutron energy spectra which closely resemble the IAEA data, a neural network trained
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on this algorithm would likely not generalize as well to neutron energy spectra which are
not already present in the IAEA data set. This algorithm is also highly specific to the exact
energy bin structure used by the IAEA report. Therefore, it is used only as an upper-bound
baseline for training data specificity, against which we may compare other neutron spectra
generation algorithms.

For the PSA algorithm, one spectrum is randomly selected from the 62 IAEA spectra
which were previously designated for use (listed in Table 1). In addition, a scaling factor α
is chosen from a normal distribution, with a mean 1 and a width of σα:

α ∼ N (1, σα). (3)

The chosen spectrum is interpolated, and this scaling factor is used to create a new
neutron energy spectrum:

φ̃(E) = φ(αE). (4)

After this perturbation, the spectrum φ̃(E) is properly normalized (Equation (2)). This
algorithm has a single tunable feature parameter σα which will be optimized using the
method outlined in Section 2.3.2. Example perturbed spectra are shown in Figure 3.

Figure 3. Example neutron energy spectra, generated by PSA (top) and RAND (bottom). For PSA
the original unperturbed spectra is plotted in red. Both of these algorithms are only intended as
baselines, for the purposes of comparison against.

2.2.2. Method 1: GAUSS1

This algorithm relies on the qualitative observation that most real-world neutron
energy spectra, when viewed on a logarithmic energy scale, consist primarily of one or
more overlapping peaks. At greater than 1 MeV energies, neutrons resulting from fission or
evaporation may show up as distinct peaks in the energy distribution. At thermal neutron
energies of less than 1 eV, these structures are generally smaller in amplitude and result
from thermalization physics. As a rough approximation to the shape of these peaks when
viewed on a logarithmic scale, Gaussians were chosen due to their mathematical simplicity
and smoothness.

This spectrum generation algorithm works by adding a random number of Gaussian
peaks to a blank neutron energy spectrum. The process is controlled by several tunable pa-
rameters:

• µcenter, σcenter—parameters between 0 and 1, which correspond to the mean and
standard deviation of the normal distribution of means of the Gaussian peaks.

• µwidth, σwidth—parameters between 0 and 1, which correspond to the mean and
standard deviation of the normal distribution of widths of the Gaussian peaks.
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• Adecay—controls the amount by which to cumulatively suppress the amplitude of
subsequent Gaussian peaks. In general, this gives rise to one central energy peak,
surrounded by smaller amplitude structures.

• σA—controls random deviations of the amplitude of the Gaussian.
• ppeak—the probability to add an extra Gaussian peak to the spectra.

These are the feature parameters of the spectra generation algorithm, and must be
tuned to reasonable values by comparison to the IAEA neutron energy spectra. Processes
for tuning each of these parameters is outlined in Section 2.3.

To generate a neutron energy spectrum we begin with a blank spectrum φi=0(E) = 0
in which all energy bins are initialized to zero. Then, an iterative process is carried out
in which one or more Gaussian-shaped peaks are added on top of this blank spectrum.
Starting with i = 0,

1. Parameters for the width and position of the Gaussian peak, on a logarithmic scale,
are sampled from their corresponding normal distributions. The values −3 and 10
correspond to the logarithms of the lowest energy bin value and the number of orders
of magnitude which our energy bins cover (10−3 eV to 107 eV), respectively.

x̄ = −3 + | 10 N (µcenter, σcenter) |
σ = | 10 N (µwidth, σwidth) |

(5)

2. The mean height Ai is perturbed according to σA:

A = Ai N (1, σA) (6)

3. A logarithmic Gaussian is added to the neutron energy bins:

φi(E) = φi−1(E) + A exp

(
−1

2

(
log10(E)− x̄

σ

)2
)

(7)

4. The mean amplitude for the next iteration is suppressed according to Adecay:

Ai+1 = Ai × Adecay (8)

5. i→ i + 1 and this entire process is repeated with a probability of ppeak.

After this iterative process has terminated, the final spectrum is properly normalized
(Equation (2)). Some example spectra, with properly tuned feature parameters, are shown
in Figure 4 below.

Figure 4. Example spectra generated by GAUSS1. The feature parameters used to generate these
plots were tuned according the method in Section 2.3.2.

2.2.3. Method 2: GAUSS2

This algorithm is very similar to method 1; however, it further constrains the types of
possible neutron energy spectra by coupling the width and height of the Gaussian peaks to
their central energy. This is based on the observation that, due to the physics of neutron
thermalization, Gaussian structures at lower energies tend to have smaller amplitudes.
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Structures with a larger energy spread will also tend to have smaller amplitudes than those
which are highly concentrated around some central energy.

The tunable parameters for this algorithm are:

• µwidth, σwidth—parameters between 0 and 1, which control the statistics of the width
of the Gaussian peaks.

• ωwidth—controls how strongly a Gaussian peak’s width is suppressed by its energy
scale.

• ωamp—controls how strongly a Gaussian peak’s amplitude is increased by its energy
scale.

• Adecay—controls the amount by which to cumulatively suppress the amplitude of
subsequent Gaussian peaks.

• ppeak—the probability to add an extra Gaussian peak to the energy spectra.

Similarly to method 1, these feature parameters must be tuned to reasonable values prior
to usage (Section 2.3).

To generate a neutron energy spectrum, we will once again start with a blank spectrum
φi=0(E) = 0 in which all energy bins are initialized to zero. Then, the following iterative
process is carried out, starting with i = 0,

1. A value between 0 and 1 is randomly chosen:

s ∼ R(0, 1) (9)

2. Parameters for the width and position of the Gaussian peak, as seen on a logarithmic
scale, are determined:

x̄ = −3 + 10 s

σ = | 10 N (µwidth, σwidth) | (1 + ωwidth s)−1 (10)

3. The amplitude of the Gaussian is suppressed according to ωamp:

A = Ai
(
1 + ωamp s

)
(11)

4. The Gaussian is added to the logarithm of the neutron energy bins:

φi(E) = φi−1(E) + A exp

(
−1

2

(
log10(E)− xi

σi

)2
)

(12)

5. The amplitude for the next iteration is suppressed according to Adecay:

Ai+1 = Ai × Adecay (13)

6. i→ i + 1 and this entire process is repeated with a probability ppeak.
After this process has terminated the spectrum is properly normalized (Equation (2).
Example spectra, with properly tuned feature parameters, are shown in Figure 5
below.
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Figure 5. Example random spectra generated by GAUSS2. The feature parameters used to generate
these plots were tuned according to the method in Section 2.3.2.

2.2.4. Method 3: FRUIT Spectra Generation Algorithm

This spectrum generation algorithm is inspired by the Frascati Unfolding Interactive
Tool (FRUIT) [12]. FRUIT iteratively unfolds neutron energy spectra by assuming that
they are well described by one of four theoretical models: fission, evaporation, Gaussian,
or high energy spectra. These four models describe a wide variety of common neutron
energy spectra, including fission sources, radionuclide neutron sources, medical cyclotrons,
and hadron accelerators [12].

The fission, evaporation, Gaussian, and high energy models consist of a weighted sum
of four component spectra, describing the physics of thermal, epithermal, fast, and high
energy neutrons. The component spectra for each model have been reprinted in Table 2.
Importantly for this paper, each of these component spectra takes tunable parameters.
By properly selecting well motivated parameters, we generate physically accurate spectra
for the given model type. The tunable parameters for each model are:

• Fission: Pth, Pe, Pf , b, β′, α, β

• Evaporation: Pth, Pe, Pf , b, β′, Tev

• Gaussian: Pth, Pe, Pf , b, β′, Em, σ

• High Energy: Pth, Pe, Pf , Phi, b, β′, Tev, Thi

Bedogni et al. [12] interpret each parameter taken by these models, and provide
definite values for T0 = 2.53× 10−8 MeV, the conventional thermal neutron energy, and
Ed = 7.07× 10−8 MeV, the lower energy range of epithermal neutrons. The parameters
Pth, Pe, Pf , and Phi control the proportion of each model’s spectrum that comes from the
thermal, epithermal, fast, and high energy components, respectively.

To randomly generate neutron energy spectra from these models, we must first deter-
mine reasonable distributions for each model parameter. To do this the fission, Gaussian,
and high energy models were fitted to each individual IAEA neutron energy spectrum.
Since the high energy model is identical to the evaporation model but with extra degrees
of freedom from the high energy component, the evaporation model was not considered
for fitting; the high energy model is always guaranteed to provide an equivalent or better
fit. Due to the high degree of non-linearity within each model’s fitting parameters, the ac-
curacy of the fit depends heavily upon the initial guesses for the fit parameters. To find
a globally optimal fit, Bayesian optimization was used to search for appropriate initial
guesses. For each IAEA spectrum, only the model that had the minimal mean squared
fitting error was considered.

Using these distributions for each model parameter, which should cover the possible
values taken by realistic neutron energy spectra, the procedure of generating a random
neutron energy spectra is as follows:

1. Randomly select between the fission, evaporation, Gaussian, or high energy models.
2. Randomly sample model parameters from the distributions determined from IAEA

spectra. For an evaporation spectrum, parameters are sampled from the relevant high
energy parameter distributions.

• Pth, Pe, Pf , and Phi are always selected from the same fit so that they sum to 1,
ensuring normalization.
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3. Create the final spectrum as a weighted sum of the relevant component spectra:

φ(E) = Pth φth(E, {params}) + Pe φe(E, {params})
+Pf φ f (E, {params}) + Phi φhi(E, {params})

(14)

Example spectra for each model type are shown in Figure 6 below.

Figure 6. Example fission, evaporation, Gaussian, and high energy spectra generated by FRUIT.

Table 2. The thermal, epithermal, fast, and high energy component spectra for each of the four
FRUIT models [12]. Note the inconsistent units across each component spectra—this problem is
remedied through proper normalization, which is done before the weighted sum of each component
is performed.

Model Thermal φth(E, ...) Epithermal φe(E, ...) Fast φ f (E, ...) High Energy φhi(E, ...)

Fission
(

E
T2

0

)
e−E/T0

[
1− e−(E/Ed)

2
]

Eb−1e−E/β′ Eαe−E/β 0

Evaporation ↓ ↓
(

E
T2

ev

)
e−E/Tev 0

Gaussian ↓ ↓ exp
(
− 1

2

(
E−Em
σEm

))
0

High Energy ↓ ↓
(

E
T2

ev

)
e−E/Tev

(
E

T2
hi

)
e−E/Thi
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2.3. Tuning the Feature Parameters of a Spectra Generation Algorithm

The PSA, GAUSS-1, and GAUSS-2 algorithms all take one or more feature parameters
which must be tuned in order to maximize the unfolding performance of a neural network
trained on the produced spectra. To evaluate the effectiveness of a given choice of feature
parameters, we must first construct an objective function to optimize against. This objective
function should take a given set of feature parameters and return the effectiveness of those
feature parameters at generating realistic spectra. In particular, we would like our objective
function to capture the idea that neural networks which have been trained on data from a
properly tuned algorithm will have the best possible unfolding performance when shown
real-world neutron energy spectra. This feature parameter tuning process is outlined in
Figure 7. We consider two candidate objective functions.

Figure 7. The process for tuning the feature parameters of a spectrum generation algorithm. The re-
gression model may be a neural network (Section 2.3.1) or a linear regression model (Section 2.3.2).

2.3.1. Feature Parameter Tuning by Evaluation on Neural Networks

The first objective function takes a brute force approach; the feature parameters are
used to create a training set which is then used to train an unfolding neural network. This
is done four times, to create four separate unfolding networks trained on four distinct sets
of randomly generated neutron energy spectra with the same feature parameters. The cost
function returns the average mean squared error unfolding performance of these four
networks when evaluated on IAEA neutron energy spectra.

2.3.2. Feature Parameter Tuning by Evaluation on Linear Regression Models

For the second objective function, the unfolding neural network is replaced with a
linear regression model,

φ(Ei) = wij dj, (15)

where wij is a matrix which maps the jth detector response bin to the ith energy bin in a
neutron energy spectra.

Although far simpler than a neural network, linear regression models still involve
a training step in which the model weights wij are tuned to minimize unfolding error
against a training set. We do not expect a linear regression model to perform as well as
an unfolding network, however both types of regression will still benefit from a properly
constrained solution space—just like a neural network, a linear regression model which has
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been trained on realistic neutron energy spectra will far outperform one which has been
trained on purely random data when unfolding real-world spectra.

The second objective function evaluates the effectiveness of a given set of feature
parameters by training four linear regression models on four distinct sets of neutron energy
spectra, randomly generated from the given feature parameters. The objective function then
returns the mean squared unfolding error of each linear regression model when evaluated
on the IAEA data set.

3. Results

When attempting to evaluate the effectiveness of a spectrum generation algorithm
for the purposes of training an unfolding neural network, there is a great deal of inherent
uncertainty. This uncertainty comes primarily from the randomly initialized neuron weights
and biases, which can lead two separate networks trained on identical data to find two
completely different loss function minima. In order to account for this uncertainty when
evaluating a given spectra generation algorithm, an ensemble of thirty networks with
identical architecture is trained on the same 3000 randomly generated spectra. Analysis
of mean squared unfolding error and mean absolute unfolding error is performed on
individual neural networks and then averaged across the thirty distinct networks.

3.1. Optimal Feature Parameters for PSA, GAUSS-1, and GAUSS-2

The feature parameters of GAUSS-1 and GAUSS-2 were tuned by means of Bayesian
optimization, with the neural network and linear regression objective functions both
utilized. All objective function optimizations were performed over the same computation
time. When compared to the neural network objective function, Bayesian optimization
performed on the linear regression objective function was able to search much more of
the parameter space since evaluations of its objective function were dramatically quicker.
This yielded two separate optimal feature parameters, according to each objective function.
Table 3 shows the average unfolding performance for networks trained on the GAUSS-1
and GAUSS-2 algorithms, for both sets of optimal feature parameters, when evaluated on
IAEA spectra.

Table 3. The mean squared unfolding error (MSE) and mean absolute unfolding error (MAE),
averaged across thirty separate neural networks, all trained on the same spectra generation algorithm
and evaluated on the IAEA real-world neutron energy spectra.

Spectra Generation Feature Parameter Tuning Method MSE MAE

GAUSS-1 Neural Network 3.42± 6.11 × 10−4 10.02± 5.18 × 10−3

GAUSS-1 Linear Regression 2.58± 4.89 × 10−4 8.69± 3.21 × 10−3

GAUSS-2 Neural Network 2.51± 4.51 × 10−4 8.13± 2.96 × 10−3

GAUSS-2 Linear Regression 2.14± 4.16 × 10−4 7.33± 2.85 × 10−3

For both GAUSS-1 and GAUSS-2 the feature parameters found through optimization
of the linear regression objective function gave better unfolding performance, when training
a neural network to unfold IAEA spectra, compared to the feature parameters found
through optimization of the neural network objective function. For the rest of our analysis,
unless otherwise specified the feature parameters found through linear regression will be
used due to their superior performance.

3.2. Unfolding Performance of Each Algorithm

Table 4 shows the average mean squared and mean absolute unfolding error for
networks trained on each of the five spectra generation algorithms, when evaluated on
IAEA spectra.
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Table 4. The mean squared unfolding error (MSE) and mean absolute unfolding error (MAE) averaged
over thirty separate neural networks, all trained on the same spectra generation algorithm, when
evaluated on IAEA neutron energy spectra.

Spectra Generation MSE MAE

PSA 1.74± 3.07 × 10−4 6.10± 3.18 × 10−3

GAUSS-1 2.58± 4.89 × 10−4 8.69± 3.21 × 10−3

GAUSS-2 2.14± 4.16 × 10−4 7.33± 2.85 × 10−3

FRUIT 1.92± 4.27 × 10−4 6.60± 3.08 × 10−3

RAND 5.83± 8.39 × 10−4 15.10± 8.02 × 10−3

Figures 8–12 show the three IAEA spectra which were unfolded with the least MSE
and the three IAEA spectra which were unfolded with the most MSE, for neural networks
trained on the the PSA, RAND, GAUSS-1, GAUSS-2, and FRUIT algorithms, respectively.

Figure 8. The three IAEA spectra which were unfolded with the least MSE (top) and most MSE
(bottom) for neural networks trained on PSA data. Each plotted unfolded spectrum is the average of
the spectra unfolded by the thirty distinct neural networks trained on the same data.

Figure 9. The three IAEA spectra which were unfolded with the least MSE (top) and most MSE
(bottom) for neural networks trained on RAND data. Each plotted unfolded spectrum is the average
of the spectra unfolded by the thirty distinct neural networks trained on the same data.
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Figure 10. The three IAEA spectra which were unfolded with the least MSE (top) and most MSE
(bottom) for neural networks trained on GAUSS-1 data. Each plotted unfolded spectrum is the
average of the spectra unfolded by the thirty distinct neural networks trained on the same data.

Figure 11. The three IAEA spectra which were unfolded with the least MSE (top) and most MSE
(bottom) for neural networks trained on GAUSS-2 data. Each plotted unfolded spectrum is the
average of the spectra unfolded by the thirty distinct neural networks trained on the same data.

Figure 12. The three IAEA spectra which were unfolded with the least MSE (top) and most MSE
(bottom) for neural networks trained on FRUIT data. Each plotted unfolded spectrum is the average
of the spectra unfolded by the thirty distinct neural networks trained on the same data.
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The IAEA neutron energy spectra set contains several kinds of commonly encountered
neutron sources, such as fission, fusion, high energy, etc. Some of these sources also include
moderators, giving rise to lower energy thermalized neutrons. Figure 13 shows the mean
squared unfolding error of Table 4, sorted according to the kind of spectra being unfolded.

Figure 13. The mean squared unfolding error for neural networks trained on each of the five spectra
generation algorithms, when evaluated on IAEA spectra of a given kind. The red line shows the
standard deviation squared unfolding error across spectra of that kind, and N is the number of
spectra of that type present within the IAEA evaluation data.

3.3. Unfolding Accuracy for Radiation Dosimetry

For some applications, such as radiation dosimetry, the precise shape of the unfolded
spectra is not the primary objective. Although an unfolded spectrum might oscillate around
the true neutron energy spectrum, when this spectrum is convoluted with equivalent dose
weighting factors these oscillations may average out yielding an accurate dose estimate.
To perform this analysis, neutron group fluence to ambient dose equivalent coefficients di
provided by the IAEA technical report [8] were used. The calculated dose equivalent H∗ is
the dose equivalent in soft tissue at a depth of 10 mm. The neutron group fluence ϕi for a
given neutron energy spectrum bin φ(Ei) is calculated according to

ϕi = (ln(Ei+1)− ln(Ei)) φ(Ei). (16)

The ambient dose equivalent is then calculated as

H∗(10mm) = n ∑
i

ϕi di, (17)

where n is a scaling factor which depends upon the emission rate of the neutron source.
For analysis only the percent error in dose is considered, and so n does not affect the results.

Table 5 shows the percent error between the dose calculated by the unfolded spectra
and the dose calculated using the known neutron energy spectra. The average and standard
deviation in percent dose error across all IAEA spectra for a given unfolding network is
calculated and then this value is averaged over all thirty networks.
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Table 5. The averaged percent error in dose prediction, across thirty separate neural networks all
trained on the same spectra generation algorithm, when evaluated on IAEA neutron energy spectra.

Spectra Generation Percent Error (%)

PSA 7.9± 9.2
GAUSS-1 11.6± 10.9
GAUSS-2 8.3± 7.6

FRUIT 7.1± 7.0
RAND 60.8± 84.1

Figure 14 shows the mean percent error in dose prediction, sorted according to the
kind of spectra being unfolded.

Figure 14. The averaged percent error in radiation dose determined from unfolded neutron energy
spectra for neural networks trained on each of the five spectra generation algorithms and evaluated
on IAEA spectra of a given kind. The red lines show one standard deviation in dose error and N is
the number of spectra of that type present within the IAEA evaluation data.

4. Discussion

The results shown in Table 3 demonstrate that linear regression models may be used
as an effective proxy when performing feature engineering on the training data of a neu-
ral network. Although a neural network based objective function will provide the most
accurate metric of expected unfolding performance, it will also be extremely computa-
tionally expensive. Each objective function evaluation will involve fully training multiple
unfolding networks, in order to account for deviations between networks, which can take
several minutes. Since an objective function is called several hundred times or more while
searching for a minimum, this will prevent any optimization algorithm from performing
an extensive search across the parameter space in a reasonable time frame. The linear
regression objective function sacrifices accuracy in calculating expected mean squared
unfolding error in order to dramatically reduce computational complexity. This allows
optimization algorithms such as Bayesian optimization to perform a much wider search
over the parameter space.

Although the kinds of neural networks used for unfolding and the specific architecture
of those networks vary widely throughout the literature, this work was performed in
the hope that our optimal training spectra would remain optimal across a wide range
of regression models. There are several properties, such as the hyper-parameters of an
unfolding network, which are highly specific to the exact neural network architecture being
employed. However, the fact that the optimal feature parameters for a linear regression
model remained optimal when being used to train a neural network provides context to the
potential for the same spectra generation algorithms outlined in this work to be employed
across a wide variety of network architectures. When unfolding onto a different energy
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bin structure we are less confident that these spectra generation algorithms will be optimal.
This is why procedures for feature parameter tuning have been discussed—so that this
work may be reproduced for other energy ranges and resolutions of interest.

In Table 4, we can see that the PSA-trained networks and the RAND-trained networks
had the least and greatest mean squared and mean absolute unfolding errors, respectively.
This is not surprising, as these algorithms were intended as upper and lower bounds on
the degree of solution space constraint. On average the mean squared unfolding error of
the PSA-trained networks, with their properly constrained training domains, were more
than three times less than the RAND-trained networks. The mean absolute unfolding
error of the PSA-trained networks was about two and a half times less than the RAND-
trained networks. In addition, when using these unfolded networks for dosimetry purposes
(Table 5), the RAND-trained networks gave dose estimates with more than 7 times as
much error as the PSA-trained networks. This provides a rough sense of scale to the
difference in unfolding performance expected between a network trained on physical vs.
non-physical spectra.

It is important to note, however, that mean squared error and mean absolute error
are flawed metrics for evaluating unfolding performance which under-represent how
much more valuable the PSA-unfolded spectra would be when used for dosimetry or
source characterization. This is illustrated when comparing the best-case and worst-case
PSA-trained unfolding (Figure 8) to that of the RAND-trained unfolding (Figure 9). We
can see that RAND-trained networks were incapable of confidently unfolding important
qualitative features of the energy spectra. If these unfolded spectra were to be used for
source characterization, even the best-case unfolding would be unable to correctly identify
the radiation source. On the other hand, the worst-case unfoldings for the PSA-trained
networks were still able to identify the rough shape and energy scale of structures within
the spectra. Although the average mean squared unfolding error of networks trained on
these upper and lower bound baselines of training domain constraint differ by only a factor
of three, within the context of unfolding use cases a properly constrained training domain
can mean the difference between highly accurate or entirely useless unfolding.

Table 4 also shows that the GAUSS-2-trained networks had 20% less mean squared
unfolding error on average than the GAUSS-1-trained networks. This difference in perfor-
mance may also be seen in Table 5, where GAUSS-2-trained networks predicted doses with
30% less mean percent dose error than GAUSS-1-trained networks. This trend is likely due
to the heavier constraints which the GAUSS-2 algorithm places on the training domain
through coupling the width and height of the added Gaussian peaks to the magnitude of
their central energy. This means that lower energy Gaussian peaks will be smaller in ampli-
tude and broader in width, resembling the physics of thermalized neutrons. In particular,
we expected that this would translate into better unfolding performance of GAUSS-2-
trained networks on moderated sources or spectra with more thermal neutrons present.
This is partially demonstrated in Figures 13 and 14, where the GAUSS-2-trained networks
have less mean squared unfolding error and percent dose error than the GAUSS-1-trained
networks when evaluated on fission, moderated fission, and moderated reference spectra.
On the other hand, GAUSS-2-trained networks see a decrease in unfolding performance
compared to GAUSS-1-trained networks for spectra with no thermalization such as high
energy and cosmic ray. The dosage predictions for these spectra types from GAUSS-2-
trained networks are worse than those from GAUSS-1-trained networks, and occasionally
worse than RAND-trained networks. This difference in performance is likely because
the GAUSS-2 algorithm attempts to enforce low-energy neutron thermalization, thus
poorly representing any non-thermal low energy structures. However, these differences in
unfolding performance are not dramatic.

Out of the three spectra generation algorithms to be investigated, the unfolding
neural networks trained on FRUIT data performed the best, on aggregate, in both mean
squared unfolding error (Table 4) and dosage estimation (Table 5). In fact, the dosage
estimates of the FRUIT-trained networks were more accurate on average than the estimates
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made by PSA-trained networks, even though PSA was intended to be an upper-bound on
performance. Since the FRUIT algorithm generates spectra from one of four theoretical
models—fission, evaporation, high energy, and Gaussian—we would expect networks
trained on it to perform particularly well when unfolding real spectra of these categories.
On the other hand, FRUIT-trained networks should not perform nearly as well when
unfolding accelerator, cosmic ray, or medical spectra as these are not modeled for by the
algorithm. However, this trend is not seen in Figures 13 or 14, and the FRUIT-trained
networks seem to be capable of generalizing to many types of neutron spectra.

Certain trends in the mean squared unfolding error across spectra types align with
what we would anticipate from the design of each spectra generation algorithm. However,
there are no spectra types for which the mean squared unfolding error of networks trained
on a specific algorithm clearly stands out. Instead, it seems that there are particular kinds
of spectra which are generally easier to unfold with a lower mean squared error. Looking
at Figures 8–12, unfolding mean squared error was universally lower for spectra which
consisted of a single peak. Due to the normalization constraint, these single-peaked spectra
necessarily have an extremely high amplitude. If the unfolding networks do not match
the small number of large amplitude bins, even if they are correct about the rough energy
range, the MSE will be very large due to the squaring of the residuals. On the other hand,
a large number of small discrepancies within spectra consisting of multiple structures, such
as for the best-case unfolding of RAND-trained networks (Figure 9), will contribute much
less to the MSE even if the quality of the unfolding is very poor. These problems can be
improved by considering other loss functions, such as mean absolute error, which do not
penalize outliers as heavily. For this reason, the mean absolute unfolding error has been
included in Tables 3 and 4. However, due to the wide-spread use of MSE as a metric for
spectrum unfolding, and to facilitate easy comparison of our unfolding performance to
other works, we have chosen to primarily use MSE in our analysis.

5. Conclusions

In this paper, we presented three methods for the random generation of large quantities
of realistic and physically motivated neutron energy spectra, without the need for expensive
experiment or Monte-Carlo simulations. This work was based on the observation that,
regardless of the specifics of an unfolding network’s architecture, the performance and
generalizability of any neural network based unfolding algorithm would be dramatically
impacted by the quality and quantity of neutron energy spectra used to train it.

Our analysis was performed on 189 of the 251 IAEA neutron energy spectra (with
the other 62 spectra being used by the PSA algorithm), which were quarantined during
the training of the unfolding networks in order to prevent any data leakage. We demon-
strated that these neutron energy spectra generation algorithms far outperformed random
training data which were not physically motivated. Out of the three spectra generation
algorithms investigated, neural networks trained on the FRUIT spectrum generation al-
gorithm (Section 2.2.4) had the greatest overall unfolding performance on IAEA spectra.
This is because it relied on theoretical models which are able to accurately capture the
physics of fission, high energy, and evaporative spectra—all of which are present in large
quantities in the IAEA data. We also determined that linear regression models could be
used in proxy of an unfolding neural network to evaluate the performance of a particular
set of training data.

A limitation of the results presented in this paper is the small number of validation
spectra used in our analysis, as the 251 IAEA spectra do not encompass all possible types of
neutron energy spectra found in the real-world. Although the general techniques outlined
in this paper may be applied to the feature engineering stage of any future work on neural
network based unfolding, the relative performance of each algorithm will depend upon
the energy ranges of interest and the spectra types to be unfolded.

Future work could improve the generalizability of networks trained on FRUIT spectra
by constructing more theoretical models for a wider range of spectra types and by per-
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forming further analysis on how to optimally select parameters for each model. Future
work could also investigate other metrics of unfolding performance which address the
problems with MSE discussed in this paper. For example, to optimize for dosage prediction
accuracy, the percent error in predicted ambient dose equivalent could be embedded into
the loss function used for training or the objective function used for feature parameter
tuning (Section 2.3).

All code and relevant analysis have been made publicly available. Our hope for this
work is that any project investigating neural network based neutron spectrum unfolding,
regardless of the neural network architecture or kind of detector used, will be able to
insert similar algorithms into the training data generation step in order to achieve optimal
unfolding performance on the problem under investigation.
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