
Citation: Harb, M.; Leichtle, D.;

Fischer, U. A Novel Algorithm for

CAD to CSG Conversion in McCAD.

J. Nucl. Eng. 2023, 4, 436–447.

https://doi.org/10.3390/jne4020031

Academic Editor: Dan Gabriel Cacuci

Received: 10 May 2023

Revised: 5 June 2023

Accepted: 14 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Novel Algorithm for CAD to CSG Conversion in McCAD †

Moataz Harb 1,2,* , Dieter Leichtle 1 and Ulrich Fischer 1

1 Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany; dieter.leichtle@kit.edu (D.L.); ulrich.fischer@kit.edu (U.F.)

2 Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
* Correspondence: harbms@ornl.gov
† This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the

US Department of Energy (DOE). The US government and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan
(accessed on 10 May 2023)).

Abstract: Modeling and simulation lie at the heart of the design process of any nuclear application.
An accurate representation of the radiation environment ensures not only the feasibility of new
technologies, but it also aids in operation, maintenance, and even decommissioning. With increasingly
complex designs, high-fidelity models have become a necessity for design maturity. McCAD has
been under development for many years at Karlsruhe Institute of Technology (KIT) to facilitate the
process of generating suitable models for nuclear analyses. In this paper, an overview of the major
advances in the new version of the code is presented. A novel conversion algorithm has proven to be
robust in significantly reducing the processing time to generate radiation transport models, making it
easier to iterate on design details. A first-of-a-kind capability to generate hierarchical void cells is
also discussed with preliminary analysis showing performance gains for particle tracking.

Keywords: CAD; CSG; fusion; nuclear analysis; MCNP

1. Introduction

Computational modeling and simulation are integral to the design phase of many
scientific and engineering applications. High-fidelity models are always in demand, and
the nuclear field is no exception. Nuclear applications have seen major strides in the
past few years, with a large fusion project like ITER undergoing the assembly phase and
many innovative fusion and fission reactor designs proposed. For all those innovative
technologies, all aspects of the design, such as the radiation environment, undergo a
modeling phase to achieve design maturity. This step is essential not only for effective
energy production but also for ensuring radiation protection, appropriate maintenance
scheduling, and potentially proper waste disposal after decommissioning.

Nuclear analysis involves creating an accurate representation of the radiation environ-
ment inside a nuclear facility by simulating the behavior of radiation, utilizing deterministic
and stochastic—Monte Carlo (MC)—codes. With the high level of complexity often en-
countered in the design of nuclear facilities—a complex network of integrated engineering
systems—MC became the method of choice. Many codes utilize the MC method, such as
MCNP [1], OpenMC [2], and SERPENT [3].

Two practical routes exist to proceed from CAD to performing nuclear analysis, and a
detailed benchmarking study of several codes was performed by Valentine et al. [4]. The
first concerns radiation transport directly in CAD using the Direct Accelerated Geometry
Monte Carlo (DAGMC) toolkit [5], which has been successfully integrated into MCNP
and other MC codes [6]. The other route is through an intermediary step, in which a

J. Nucl. Eng. 2023, 4, 436–447. https://doi.org/10.3390/jne4020031 https://www.mdpi.com/journal/jne

https://doi.org/10.3390/jne4020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jne
https://www.mdpi.com
https://orcid.org/0000-0002-0037-9087
https://orcid.org/0000-0003-1741-5061
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.3390/jne4020031
https://www.mdpi.com/journal/jne
https://www.mdpi.com/article/10.3390/jne4020031?type=check_update&version=2


J. Nucl. Eng. 2023, 4 437

converter translates the model from the boundary representation (BRep) CAD method to
the native input representation of MC codes, constructive solid geometry (CSG). The latter
is manually prohibitive for complex geometries. As a result, automatic conversion tools
have been under development for several years, such as McCAD [7,8] and SuperMC [9],
to facilitate the development of higher fidelity models. Both routes have demonstrated
capabilities in radiation transport of complex nuclear facilities. Recently, a third route
emerged that uses a hybrid modeling approach: global CSG models with embedded
unstructured mesh (UM) and stereolithography (STL) [10] formatted components in MCNP
and SERPENT [4], respectively.

This paper highlights the recent advancements in McCAD, as the code has gone
through an evolution of its structure and functionalities. Section 2 introduces the new code
structure. In Sections 3 and 4, the foundations of the CAD-to-CSG conversion as well as
the improvements of the core algorithms are discussed in detail. Finally, Sections 5 and 6
provide future outlook and conclusions, respectively. For clarity, CAD and BRep are used
interchangeably in this paper. The same applies to CSG and MC.

2. Code Philosophy and Structure

The open-source, licensed under GNU Lesser General Public License v2.1 (LGPL-
2.1), automatic CAD-to-CSG conversion code McCAD has been under development at
the Karlsruhe Institute of Technology (KIT) for several years. The original version of the
code [11] is integrated with the Salome [12] platform version 7.4.0 to provide a user interface
for CAD manipulations and material assignment, as well as coupling with Salome features
for mesh generation. Since then, efforts have been directed toward improving the core
algorithm [7,13] and integrating the code with FreeCAD [14].

In 2019, McCAD development took on a new path and philosophy: advancing the core
algorithms and reducing third-party dependencies. Although coupling the code with CAD
software provides the advantage of a built-in interface for CAD manipulations, in most
cases, the CAD software used by the user is different than the one McCAD is integrated
with. Also, this discrepancy makes McCAD susceptible to a major drawback, that is, the
need to keep up with the updates in the CAD interfaces. On the other hand, McCAD
lacked centralization of methods in the core algorithm, and support for new use cases and
surface types was missing. All of these considerations incentivized exploring a new path
for code development.

The new version of the code, and the subject of this paper—McCAD v1.0 [15,16]—
continues to be open source for the conversion of CAD solid models to CSG. McCAD is a
C++ library that utilizes the open-source 3D geometry library Open CASCADE Technology
(OCCT) [17] as its geometry engine, which is used for CAD solid processing and manipula-
tion. Also, McCAD utilizes a few header files from Boost C++ Libraries [18] for parallel
processing. Since McCAD doesn’t have a GUI for geometry manipulations, to provide
a user interface, a Python interface script was developed for SpaceClaim [19], to enable
users to run McCAD on selected solid(s) from SpaceClaim GUI. McCAD uses CMake build
systems, and the executable can be run via a command line on both Windows and Linux
OSs. Currently, the code only supports CAD to MCNP conversion, but it is seen that in the
near future support for other MC codes will be added.

McCAD v1.0 builds upon the implemented improvements in v0.5 described in Lu
et al. [7]. However, major improvements have been implemented. A new code structure
has been developed that makes use of modularity and centralization of the methods, both
of which ensure easier maintainability and higher re-usability. This was mainly achieved
through employing object-oriented programming and focusing on a single/limited re-
sponsibility of the different methods. The new version implemented a novel robust and
adaptive core conversion algorithm. The aforementioned advances are discussed in detail
in Sections 3 and 4.



J. Nucl. Eng. 2023, 4 438

3. McCAD Decomposition Algorithm

MC codes rely on a variety of native input formats to represent a model geometry. In
MCNP, the textual input defines complex geometrical formations as the resultant of Boolean
operations involving 1st, 2nd, and 4th—only a torus—degree surfaces. A “cell” in MCNP
is defined through the Boolean union and intersection operations among the boundary
surfaces of a spatial region. A cell is then a representation of part of the CAD model,
the interior of which can be assigned the corresponding material properties. Because all
regions in the problem domain must belong to well-defined cells with assigned properties,
those not filled with materials must be represented as voided cells. Radiation particles are
then tracked in the problem domain as they traverse the different cells and interact with
the materials within. The description of geometry in terms of cells and surfaces quickly
becomes both time-consuming and error-prone once input models increase in complexity.
For advanced, complex nuclear facilities, this option is typically impractical. Automatic
CAD-to-CSG conversion tools have been under development to tackle this issue.

In CAD-to-CSG conversion, the task of developing a radiation transport model suitable
for nuclear analyses is reduced to a representation of the original CAD model in terms
of cells with assigned material properties. The first step of that process involves the
decomposition of complex shapes/formations into their constituent subsolids with first
and second degree bounding surfaces. The second step involves generating the CSG
representation of the void regions in the problem domain, assigning material properties to
all cells, and writing the MCNP input. Figure 1 shows a generalized CAD-to-CSG workflow
of an arbitrary solid in McCAD. In this paper, decomposition, the most intensive process,
refers to all the steps enclosed by the red border line, whereas the last step, shown in the
lower left corner of the figure, is referred to as conversion.

Figure 1. CAD-to-CSG conversion workflow.

3.1. Space-Based Decomposition

The decomposition algorithm of McCAD uses a space-based approach to recursively
reduce complex solids into their constituent convex subsolids. A schematic of the decom-
position of an arbitrary solid is shown in Figure 2. The approach involves the selection
of a splitting surface, highlighted in orange, to create two subspaces, one on both sides
of the broken vertical line under each split solid. In turn, each subspace contains one
or more subsolids that are recursively decomposed. The decomposition process forms a
tree-like structure with its root at the parent solid. An interior node in the tree represents a
subsolid, and a leaf node contains a convex subsolid, highlighted in blue, at which stage
the decomposition process ceases. The process continues until all branches reach leaf
nodes or until a user-controlled maximum tree depth is reached. If the maximum depth is



J. Nucl. Eng. 2023, 4 439

reached while some subsolids still have candidate split surfaces, then the root solid will
be tagged as rejected and will be saved to a STEP file with other rejected solids. Saving
rejected solids to a STEP file is a new feature added in McCAD v1.0, which is essential so
that a user can simplify the rejected solid and proceed with the conversion process. The
decomposition process utilizes parallel processing from the Boost C++ libraries to initiate
the decomposition on several input solids. For each solid being decomposed, the process
propagates depth first along the branch until cessation of the decomposition, at which point
McCAD starts working on the nearest subsolid up the tree from where it branched out.

Figure 2. Part of a decomposition tree of an arbitrary solid.

3.2. Detection of Splitting Surfaces

Starting with a sweep over all boundary surfaces of a solid, specialized objects are
created for each surface to store its attributes. Those attributes include the OCCT face
object and the mesh triangles of the surface, among others. The latter utilizes OCCT
functions to create the surface triangulation—a set of triangles representing the surface—
based on a user-controlled mesh refinement parameter. Detection of splitting surfaces
involves recursively checking for possible collisions between surface pairs by utilizing the
triangulation. The triangle collision detection method, first introduced in McCAD v0.5 [7],
reduces the collision detection process into a check over the relative positioning of the
triangle vertices by utilizing a sense evaluator. A mesh triangle is said to collide with a
surface if its vertices are on either side of the surface, given a user-controlled distance
tolerance. A surface is said to intersect with another surface if a subset of its mesh triangles
either directly collide or are on either side of the other surface. A surface is flagged as a
candidate split surface if it intersects with other boundary surfaces or if boundary surfaces
are on either side of it. In McCAD v1.0, collision detection has been improved by employing
oriented bounding boxes (OBB). Prior to vertices-surface relational calculations, OCCT
functions are utilized to judge whether the OBBs of both the surface and the mesh triangle in
question intersect. This then eliminates the need to recursively perform the vertices–surface
checking for non-intersection cases.

3.3. Assisting Splitting Surfaces

McCAD utilizes only planar surfaces to perform decomposition of solids. The top row
of Figure 3 shows two modes of decomposition, B and C, of an arbitrary solid, A, with a
cylindrical–planar surfaces interface. In case A, the solid has no concave edges and, as a
result, would not be identified by McCAD as having any candidate split surfaces. However,
in MCNP, the cylindrical surface definition would result in a complete cylinder, not a half
cylinder—as would be needed to define a cell representing the solid. That would be in tune
with mode C of decomposition. However, this approach results in the creation of sharp



J. Nucl. Eng. 2023, 4 440

edges/corners, a feature that has proven to be problematic for particle tracking in MCNP,
as it results in lost particles.

Methods have been implemented to deal with such cases as A, D, and F in Figure 3.
The methods identify the planar–curved surfaces common edges and call on specialized
classes to create auxiliary planar surface(s), which are then used to decompose the solid, as
demonstrated in modes B, E, and G in Figure 3. In McCAD v0.5 [7] the assisting surface
functions were further improved; this was achieved by limiting the usage of a single
assisting surface to curvatures ≥ 90°, cases B and G, while using two surfaces through the
main axis for curvatures < 90°, case E, to avoid the creation of thin slices. In McCAD v1.0,
those methods have been expanded with more interface cases to generate assisting surfaces
through planar and curved edges—parabolic, hyperbolic, and circular—for combinations
of planar, cylindrical, toroidal, and conical surfaces.

Figure 3. Decomposition using assisting surfaces (difference in colors signify disjoint solids).

The improved algorithm has a demonstrated benefit in splitting elbows from straight
pipe sections. Moreover, in McCAD v1.0, a new method has been introduced to simplify
non-basis aligned toroidal elbows as cylindrical segments through user-controlled segmen-
tation parameters. Figure 4 shows a pipe with two elbows, case A, with the elbows split
from the straight sections, case B, and then simplified as cylindrical segments, case C. This
is essential to maintain the overall configuration of pipes in models with tight tolerances.

Figure 4. Pipe decomposition in McCAD (difference in colors signify disjoint solids).

3.4. Sorting Splitting Surfaces

The tree formation process described in Section 3.1 is an optimization problem unto
itself: selecting the optimum tree structure from the space of all possible tree structures.
At each node of the tree, the number of potential branches is equal to the number of
splitting surfaces. Metadata are collected during the collision detection and assisting
surface generation steps by tallying the number of instances of surface intersections as
well as their types. The surfaces are then judged to exclude non-splitting surfaces, after
which a final check is performed where all similar surfaces are merged, and an assigned tag
indicates the number of repetitions. The candidate splitting surfaces are then rank-ordered
based on decomposition optimization heuristics that mainly aim to reduce fragmentation.
Considering all the candidate splitting surfaces at a node, a surface will take precedence if,
compared to others, it

• goes through the largest number of concave edges,
• intersects with the least number of 1st degree surfaces,
• intersects with the least number of 2nd degree surfaces,



J. Nucl. Eng. 2023, 4 441

• is a repeated surface,
• is an assisting surface, and
• has edge loops.

A concave edge is defined as one that is shared between two surfaces with an angle less
than 180° between surfaces normals. A surface that intersects with the largest number of
concave edges will potentially reduce the subsequent number of decompositions. Then, the
algorithm attempts to minimize cutting through other surfaces. A split surface with a large
number of repetitions would potentially reduce the subsequent number of decompositions.

4. McCAD Conversion Algorithm

One of the major advances in McCAD v1.0 concerns the conversion algorithm. The
conversion algorithm from McCAD v0.5 has been completely replaced by a novel one
that makes use of the new code structure and proven, through testing, to be more robust.
Although McCAD v1.0 maintained the polymorphism of geometrical entities—through
dedicated classes for different solids and surfaces by type—it also expanded it through
the creation of a “compound solid” class. A compound is defined in McCAD v1.0 as the
original input solid to be decomposed and later converted into CSG format. This class
holds the original solid details, such as its name and other geometrical properties. As
the solid progresses through decomposition and conversion processes, the attributes are
updated—such as the boundary surfaces, and subsolids objects. This opened the door
for new capabilities in conversion. McCAD now offers the user control over the solid
representation; separate cells can represent each subsolid or a single cell can represent
the union of all the subsolids. McCAD also generates supplementary files for volume
validation. A new void cell manager allowed for additional features in void generation,
discussed in detail in Sections 4.1 and 4.2.

4.1. Domain Decomposition: Conformal Void Cells

When converting CAD solids to CSG, all space not belonging to material cells must be
contained within voided cells. This ensures that all regions in the problem domain belong
to well defined cells with known properties for particle tracking in radiation transport.
McCAD conversion algorithm can perform automatic void generation, through a user-
controlled on/off input switch. Another aspect of the void cells is the complexity/length
of their expression in MCNP input. Since a void cell can be thought of as the Boolean
complement of all the material cells contained within, the larger the number of cells, and in
turn surfaces, the longer the void cell expression. This can have detrimental effects on the
radiation transport time. As a result, McCAD v1.0 introduced two user-controlled input
parameters to control both the size of and the number of solids contained within a void cell.
This addition gives the user more control over the number of generated void cells as well
as the complexity of their expressions.

A major improvement of the new conversion algorithm is seen in the processing time
and computer memory utilization for void generation. The improvement can be divided
into two main processes: splitting of void cells and detection of solids and void cells
intersection. When performing domain decomposition to define the void cells, McCAD
starts with all solids inside a single void cell, representing the axis-aligned bounding
box (AABB) for the entire CAD model. Then, based on the size of the model, number of
solids, and user parameters, McCAD judges whether that “root” void cell will need to be
simplified via splitting.

Concerning void cells splitting, the algorithm in McCAD v0.5 relied on uniform
splitting of a void cell using three planes through its center, each perpendicular to one
of the basis axes, resulting in eight quadrants. Following this method, any void cell that
triggers the algorithm to perform splitting, due to the number of solids contained within,
would result in eight void cells instead. Though at first glance this approach would seem
to reduce the number of subsequent splittings, it creates geometry errors in MCNP as a
result of void and material cells overlapping, and it is resource-intensive with respect to



J. Nucl. Eng. 2023, 4 442

collision detection. In McCAD v0.5, after a void cell is split, collision detection of the newly
created eight void cells and the solids is performed through the same algorithm used for
decomposition. This resulted in the costly collision detection process being performed eight
times for each splitting of a void cell. The overall process, then, is deemed error-prone.

In McCAD v1.0, a new approach has been adopted for void generation based on a
density-informed selective splitting and 1D-based collision detection, which are first-of-
a-kind in a CAD-to-CSG conversion algorithm. At the beginning of void generation, the
void cell manager creates a root void cell with all solids within. This process utilizes OCCT
functions to create the AABB object and obtain its extents along the three axes. After that,
all solids are reduced to three maps, one for each axis, of solid IDs and their AABB extents.

McCAD v1.0 performs splitting of a void cell using only a single plane. For each axis,
candidate split planes are selected and sorted to set the priority of splitting. The candidate
split planes include the mid-plane of the void cell’s AABB as well as another plane based on
the distribution of the centers of the AABB of each solid contained within the void cell. For
narrow distributions, the plane is selected to be away from the mean—and vice versa for
wide distributions. Candidate split planes are then sorted to prioritize those that (a) reduce
the number of solids that the plane would cut through, (b) have the fewest subsequent
splittings, and (c) would result in two void cells that are at least equal to the user-controlled
minimum volume. This is judged using the internal collision detector.

Using 1D maps, it is easier to loop over all solids and quickly judge based on the
extents of their AABBs whether they overlap with the cutting plane or not. Collision
detection is then reduced to logical operations on numerical values—the extents of each
solid’s AABB and the coordinates of the cutting plane—which is a far quicker process than
utilizing OCCT functions on the CAD solids themselves. Another parameter in selecting
the cutting plane is the number of solids on either side, which provides a measure of the
prospective number of splittings later on. After repeating the same process along the three
axes, a plane is selected. After splitting, the parent void cell results in two daughters,
and the process is repeated recursively. The two resultant void cells collectively span the
full extent of the parent, which makes these conformal void cells. This approach ensures
a reduction of unnecessary splitting of void cells and that the generated void cells are
adaptive, denser around large solids aggregates, and vice versa for less populated regions
of space.

As an example, consider an arbitrary collection of CAD solids, shown in Figure 5a.
The solids represent different combinations of planes, cylinders, cones, and tori and result
in a total of 63 subsolids after decomposition, Figure 5b. The center and extent of the AABB
of each subsolid along the X-, Y-, and Z-axis is plotted in Figure 6. For each horizontal
line segment, the center point represents a subsolid’s AABB center, whereas the length
represents its extent along the corresponding axis. Three candidate planes—along the X-,
Y-, and Z-axis—were chosen by the density-informed selector, designated with the broken
vertical lines. The candidate planes would cut through 3, 4, and 15 subsolids along the X-,
Y-, and Z-axis, respectively. McCAD chose the one along the X-axis. If the old splitting
scheme was used—three planes through the center of the void cell, as shown as the solid
lines in Figure 6—then the plane through the Z-axis would cut though almost all solids,
necessitating collision detection via OCCT functions on CAD solids.



J. Nucl. Eng. 2023, 4 443

(a)

(b)
Figure 5. An arbitrary collection of solids, (a) original and (b) decomposed.

Figure 6. Distribution of AABB centers and extents of an arbitrary collection of 63 solids.



J. Nucl. Eng. 2023, 4 444

4.2. Domain Decomposition: Hierarchical Void Cells

A first-of-a-kind capability of McCAD v1.0 is the generation of hierarchical void cells.
Bounding volume hierarchy (BVH) has never been utilized for radiation transport in MC
simulations, except for CAD-based codes such as DAGMC [5]. McCAD v1.0 void cell
manager has the capability, through a user-controlled on/off input switch, to generate
either conformal or hierarchical void cells. Hierarchical void cells form a binary tree with
the root corresponding to the AABB of the entire CAD model. Using the advanced void
cell manager described in Section 4.1, McCAD then splits the root void cell into two and
progresses recursively down the tree. At each node, a void cell contains two daughter void
cells, and the parent–daughter relation is captured. When splitting of void cells ceases, at
which stage leaf nodes are formed, the void cells contain CAD solids from the model. This
simplifies the CSG expression for most of the void cells in the model—a complement of
only two rectangular prisms.

In MCNP, one of the resource-intensive processes involves the update to the state
of the particle as it traverses the medium. It involves the calculation of surface crossings
based on the distances to the boundary surfaces in the current cell. For a void cell, this
means a calculation of the distance to all surfaces represented in the void cell definition.
Thus, a complex/lengthy void cell expression would result in a slowdown of the radiation
transport simulation. Hierarchical void cells provide a benefit to combat this slowdown;
each void cell contains only two cells, with six planar surfaces each. This not only puts an
upper bound on the number of calculations involved in determining the particle’s distance
to the cell boundaries, but it also simplifies such calculations by using only planar surfaces.

To demonstrate this ability, the arbitrary collection of 63 solids referenced in Section 4.1
was utilized in a preliminary comparison of hierarchical vs. conformal void cells. By
varying the number of solids per void cell in McCAD input, several MCNP input files were
generated utilizing both hierarchical and conformal void cells. This parameter controls the
material cells contained in all conformal and the inner-most hierarchical void cells, which
determines the overall number of void cells in the MCNP input. Using the surface source
defined by McCAD for stochastic volume calculation—defined on a sphere surrounding
the solids with particles directed inward—the volumes of all voided material cells were
calculated. The obtained results were identical because no changes to the material cells
were made, but the structure of the void cells showed differences in terms of performance.
MCNP6.2 was used to simulate 2 × 108 histories on a single thread on 11th Gen Intel(R)

Core(TM) i7-11850H @ 2.50 GHz.
In Figure 7a,b, the computing time and the number of particle histories per hour, as

reported by MCNP, are plotted against the number of solids per void cell, respectively. For
the case with 70, a single void cell was generated in both cases, and the time and number
of histories are similar. As the number of void cells increases, the number of solids per void
cell decreases, demonstrating the performance gain. Both figures show that hierarchical
void cells are superior to conformal ones in terms of lower computing times, which were
up to 50% reduced, and higher processed particle histories per hour. Such a gain does not
come at the expense of an increased number of void cells: the number is comparable in
both cases, as demonstrated in Figure 7c.



J. Nucl. Eng. 2023, 4 445

(a) (b)

(c)
Figure 7. Conformal vs. hierarchical void cells: (a) MCNP computer time, (b) number of histories per
hour, and (c) total number of void cells in the model.

4.3. Supplementary Output

When converting CAD models to CSG, in addition to checking for lost particles,
volume validation is conducted to ensure that the deviation between CSG cells and CAD
solids, if any, is kept to a minimum and that adequate density modifications are applied
accordingly. This validation is performed through a one-to-one comparison between the
original CAD solids, the sum of its subsolids after decomposition, and the stochastic
volumes calculated in MCNP. McCAD v1.0 provides the necessary output to the user for
this volume validation. When executed in decomposition mode, McCAD writes a list of
all input solids names and volumes, as processed by OCCT, to a text file. When executed
in conversion mode, McCAD produces mapping of cell IDs and the corresponding names
and volumes of solids to a text file. This serves as a mapping between the cell IDs and the
original input solids and their subsolids, making it easy to perform volume validation.

For conversion to MCNP, McCAD v1.0 provides two supplementary outputs. The first
is in terms of a textual material-to-void cells mapping. This is beneficial in case any modifi-
cations must be implemented in the generated MCNP input file without the user repeating
the conversion process all over again, although with the new conversion algorithm this
difference has greatly diminished. Also, McCAD provides, in the MCNP input, auxiliary
cells as well as surface, source, and tally definitions for stochastic volumes calculation.



J. Nucl. Eng. 2023, 4 446

5. Outlook

For future work, McCAD v1.0 is expected to undergo an extensive benchmarking and
validation campaign. More capabilities are to be added to support processing solids with
spherical and spline surfaces. The latter could open the door for modeling of complex
shapes such as those encountered in stellarator designs, which as of this writing are
supported only through CAD-based radiation transport codes. An extensive testing of the
core algorithm could also lead to an optimized decomposition through an improvement of
the surface selector heuristics.

6. Conclusions

This paper presents recent advances in the open-source code McCAD. In version 1.0 of
McCAD, a new code structure has been realized. This includes using modern C++ coding
standards and enforcing modularity that, in turn, ensures reusability and maintainability
of the code classes and methods. Dependencies of the code have been limited to OCCT
as a geometry engine and the Boost C++ library for parallel processing. The original
decomposition algorithm from version 0.5 has been improved and expanded. By utilizing
OBBs, unnecessary surfaces collision detection has been eliminated. Assisting splitting
surface generation has also been expanded by including more use cases and new surface
types: conical and toroidal. Pipework simplification has been implemented, a feature that
ensures that the pipe configuration is maintained for models with tight tolerances.

A new conversion algorithm has been developed for version 1.0. The new algorithm
is more robust than its predecessor, adding important new features. The automatic void
generation has been implemented through an informed split plane selector and 1D-based
collision detection. Unnecessary splitting of void cells has been eliminated, and more
control over the void generation is granted to the user. Moreover, a new capability has
been introduced to generate hierarchical void cells. A preliminary performance study
demonstrated performance gains over conventional void cells. This could open the door
for more optimization of radiation transport in complex models.

Author Contributions: Writing—original draft preparation, M.H.; writing—review and editing, M.H.
and D.L.; supervision, D.L. and U.F.; project administration, D.L. All authors have read and agreed to
the published version of the manuscript.

Funding: Development of McCAD was funded through EUROfusion as an implemented task
under several work packages. For more details on funding, please contact Dieter Leichtle via
dieter.leichtle@kit.edu.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to acknowledge the contributions of the original de-
veloper Lei Lu whose efforts in the original version of the code—McCAD v0.5—paved the way
for the evolved and improved version, McCAD v1.0. Also, the authors appreciate the significant
contributions of Christian Wegmann at the early stages of McCAD development. His dedication and
programming expertise and skills helped the development tremendously.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

KIT Karlsruhe Institute of Technology
MC Monte Carlo
MCNP Monte Carlo N-Particle transport
CAD Computer Aided Design
DAGMC Direct Accelerated Geometry Monte Carlo
BRep Boundary Representation



J. Nucl. Eng. 2023, 4 447

CSG Constructive Solid Geometry
UM Unstructured Mesh
STL STereoLithography
LGPL-2.1 GNU Lesser General Public License v2.1
OCCT Open CASCADE Technology
OS Operating System
STEP STandard for the Exchange of Product model data
OBB Oriented Bounding Boxes
AABB Axis-Aligned Bounding Box
BVH Bounding Volume Hierarchy

References
1. X-5 MONTE CARLO TEAM. MCNPTM—A General Monte Carlo N-Particle Transport Code Overview and Theory Version 5 Vol. I;

Report LA-UR-03-1987; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003.
2. Romano, P.K.; Horelik, N.E.; Herman, B.R.; Nelson, A.G.; Forget, B.; Smith, K. OpenMC: A State-of-the-Art Monte Carlo Code for

Research and Development. Ann. Nucl. Energy 2015, 82, 90–97. [CrossRef]
3. Leppänen, J.; Pusa, M.; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T. The Serpent Monte Carlo code: Status, development and

applications in 2013. Ann. Nucl. Energy 2015, 82, 142–150. [CrossRef]
4. Valentine, A.; Berry, T.; Bradnam, S.; Hagues, J.; Hodson, J. Benchmarking of emergent radiation transport codes for fusion

neutronics applications. Fusion Eng. Des. 2022, 180, 113197. [CrossRef]
5. Wilson, P.P.; Tautges, T.J.; Kraftcheck, J.A.; Smith, B.M.; Henderson, D.L. Acceleration techniques for the direct use of CAD-based

geometry in fusion neutronics analysis. Fusion Eng. Des. 2010, 85, 1759–1765. [CrossRef]
6. DAGMC Supported Codes. Available online: https://svalinn.github.io/DAGMC/install/dagmc.html (accessed on 10 May 2023).
7. Lu, L.; Qiu, Y.; Fischer, U. Improved solid decomposition algorithms for the CAD-to-MC conversion tool McCad. Fusion Eng. Des.

2017, 124, 1269–1272. [CrossRef]
8. Fischer, U.; Grosse, D.; Lu, L.; Kondo, K.; Pereslavtsev, P.; Serikov, A.; Vielhaber, S. Applications of the McCad geometry

conversion tool in fusion technology-ITER, IFMIF and DEMO. Trans. Am. Nucl. Soc. 2013, 109, 729–732.
9. Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L.; FDS Team. CAD-based Monte Carlo program for integrated

simulation of nuclear system SuperMC. Ann. Nucl. Energy 2015, 82, 161–168. [CrossRef]
10. STL Format. 2019. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml (accessed on 10

May 2023).
11. McCAD-Salome. Available online: https://github.com/inr-kit/McCad-Salome-Binaries (accessed on 10 May 2023).
12. Salome Version 7.4. Available online: https://www.salome-platform.org/ (accessed on 10 May 2023).
13. McCAD-FreeCAD. Available online: https://github.com/inr-kit/McCAD-FreeCAD (accessed on 10 May 2023).
14. FreeCAD. Available online: https://www.freecad.org/ (accessed on 10 May 2023).
15. Harb, M.; Wegmann, C.; Fischer, U.M. McCAD v1.0L An Improved CAD to MCNP Interface Library. Trans. Am. Nucl. Soc. 2020,

122, 613–616.
16. McCAD v1.0. 2022. Available online: https://github.com/inr-kit/McCAD-Library (accessed on 10 May 2023).
17. Open CASCADE Technology v7.7.0. Available online: https://dev.opencascade.org/release (accessed on 10 May 2023).
18. Boost C++ Libraries v1.81.0. Available online: https://www.boost.org/users/download/ (accessed on 10 May 2023).
19. ANSYSTM SpaceClaim 2022 R1. 2022. Available online: https://www.ansys.com/products/3d-design/ansys-spaceclaim

(accessed on 10 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.anucene.2014.07.048
http://dx.doi.org/10.1016/j.anucene.2014.08.024
http://dx.doi.org/10.1016/j.fusengdes.2022.113197
http://dx.doi.org/10.1016/j.fusengdes.2010.05.030
https://svalinn.github.io/DAGMC/install/dagmc.html
http://dx.doi.org/10.1016/j.fusengdes.2017.02.040
http://dx.doi.org/10.1016/j.anucene.2014.08.058
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://github.com/inr-kit/McCad-Salome-Binaries
https://www.salome-platform.org/
https://github.com/inr-kit/McCAD-FreeCAD
https://www.freecad.org/
https://github.com/inr-kit/McCAD-Library
https://dev.opencascade.org/release
https://www.boost.org/users/download/
https://www.ansys.com/products/3d-design/ansys-spaceclaim

	Introduction
	Code Philosophy and Structure
	McCAD Decomposition Algorithm
	Space-Based Decomposition
	Detection of Splitting Surfaces
	Assisting Splitting Surfaces
	Sorting Splitting Surfaces

	McCAD Conversion Algorithm
	Domain Decomposition: Conformal Void Cells
	Domain Decomposition: Hierarchical Void Cells
	Supplementary Output

	Outlook
	Conclusions
	References

