New Mini Neutron Tubes with Multiple Applications
Abstract
:1. Introduction
2. The Mini Neutron Tube Design
2.1. The Axial-Type Mini Neutron Tube
2.2. The Coaxial-Type Mini Neutron Tube
3. Mini d-d Neutron Tubes for 2.45 MeV and Thermal Neutron Production
3.1. Axial (d-d) Neutron Tube for Intraoperative Radiotherapy (IORT) and Skin Cancer Treatment
3.2. Axial (d-d) Neutron Tube for Porosity Measurement in Well Logging
3.3. Multi Axial (d-d) Neutron Tubes for High Flux Thermal Neutron Generation
4. Mini d-10B Neutron Tube for 6 MeV Neutron Production
4.1. Axial (d-10B) Neutron Tube for SNM Detection
4.2. Mini Axial (d-10B) Neutron Tube for Carbon or Well Logging
4.3. Mini (d-10B) Neutron Tube for 11C PET Radioisotope Production
4.4. Long Axial or Coaxial (d-10B) Neutron Tube for Reactor Startup Operation
5. Mini (d-7Li) Neutron Tube for 10 and 13 MeV Neutron Production
5.1. A Point High-Energy Neutron Source for Imaging Application
5.2. Coaxial (d-7Li) Neutron Tube for Radioisotope Production
5.3. High Intensity (d-7Li) Neutron Irradiator for Fusion Reactor Wall Material Study
6. Mini (p-7Li) Neutron Tubes for Direct Production of Epithermal Neutron
6.1. Axial Epithermal Neutron Tube for Boron Neutron Capture Therapy (BNCT)
6.2. Coaxial Epithermal Neutron Tube for the Production of Medical Radioisotopes
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, K.-N. Production of H− Ions by Thermal Desorption Process. AIP Adv. 2023, 13, 075123. [Google Scholar] [CrossRef]
- Leung, K.-N. New Compact Neutron Generator System for Multiple Applications. Nucl. Technol. 2020, 206, 1607–1614. [Google Scholar] [CrossRef]
- Martellini, M.; Sarotto, M.; Leung, K.-N.; Gherardi, G. A Compact Neutron Generator for the Niort® Treatment of Severe Solid Cancers. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Chen, A.; Antolak, A.; Leung, K.-N. Electronic Neutron Sources for Compensated Porosity Well Logging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2012, 684, 52–56. [Google Scholar] [CrossRef]
- Alfassi, Z.B.; Chung, C. (Eds.) Prompt Gamma Neutron Activation Analysis; CRC Press, Inc.: Boca Raton, FL, USA, 1995. [Google Scholar]
- Bin, J.; Obst-Huebl, L.; Mao, J.-H.; Nakamura, K.; Geulig, L.D.; Chang, H.; Ji, Q.; He, L.; De Chant, J.; Kober, Z.; et al. A New Platform for Ultra-high dose rate radiobiological research using the BELLA PW Laser Proton Beamline. Sci. Rep. 2022, 12, 1484. [Google Scholar] [CrossRef] [PubMed]
- Macomber, M.W.; Tarabadkar, E.S.; Mayr, N.A.; Laramore, G.E.; Bhatia, S.; Tseng, Y.D.; Liao, J.; Arbuckle, T.; Nghiem, P.; Parvathaneni, U. Neutron Radiation Therapy for Treatment of Refractory Merkel Cell Carcinoma. Int. J. Part. Ther. 2017, 3, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Feldman, L.C.; Picraux, S.T. Ion Beam Handbook for Material Analysis; Mayer, J.W., Rimini, E., Eds.; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Kononov, V.; Bokhovko, M.; Kononov, O.; Soloviev, N.; Chu, W.; Nigg, D. Accelerator-Based Fast Neutron Sources For Neutron Therapy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 564, 525–531. [Google Scholar] [CrossRef]
- Norman, E.B.; Prussin, S.G.; Larimer, R.-M.; Shugart, H.; Browne, E.; Smith, A.R.; McDonald, R.J.; Nitsche, H.; Gupta, P.; I Frank, M.; et al. Signatures of Fissile Materials: High-Energy γ Rays Following Fission. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2004, 521, 608–610. [Google Scholar] [CrossRef]
- Slaughter, D.; Accatino, M.; Bernstein, A.; Church, J.; Descalle, M.; Gosnell, T.; Hall, J.; Loshak, A.; Manatt, D.; Mauger, G.; et al. Preliminary Results Utilizing High-Energy Fission Product γ-Rays to Detect Fissionable Material in Cargo. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 241, 777–781. [Google Scholar] [CrossRef]
- Ludewigt, B.A.; Bleuel, D.L.; Kwan, J.W.; Li, D.; Ratti, A.; Staples, J.W.; Virostek, S.P.; Wells, R.P. High-Yield Neutron Source for Cargo Container Screening. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–1 November 2006; pp. 300–303. [Google Scholar]
- Brookhaven National Laboratory (BNL). Available online: http://www.nndc.bnl.gov (accessed on 2 February 2018).
- Kavetskiy, A.; Yakubova, G.; Prior, S.A.; Torbert, H.A. Neutron Gamma Analysis of Soil Carbon: Post-irradiation physicochemical effects. Environ. Technol. Innov. 2023, 31, 103219. [Google Scholar] [CrossRef]
- Volkovitsky, P.; Gilliam, D. Possible PET Isotope Production Using Linear Deuteron Accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2005, 548, 571–573. [Google Scholar] [CrossRef]
- Leung, K.-N.; Tanaka, N. A Multi E x B Filter System for Isotope Enrichment Application. Appl. Radiat. Isot. 2020, 155, 108946. [Google Scholar] [CrossRef] [PubMed]
- Mohanakrishnan, P.; Singh, O.P.; Umasankari, K. (Eds.) Physics of Nuclear Reactors; Academic Press: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Leung, K.-N.; Leung, J.K.; Melville, G. Feasibility Study on Medical Isotope Production Using a Compact Neutron Generator. Appl. Radiat. Isot. 2018, 137, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Martellini, M.; Leung, K.-N.; Gherardi, G.; Falzone, L. Local Production of the Alpha-Emitting Radioisotope Actinium 225 with Low Impurities for Targeted Alpha Therapy by a Compact Neutron Generator System. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Ehrlich, K.; Möslang, A. IFMIF—An International Fusion Materials Irradiation Facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1998, 139, 72–81. [Google Scholar] [CrossRef]
- Lee, C.L.; Zhou, X.L. Thick Target Yields for the 7Li(p,n)7Be Reaction near Threshold. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1999, 152, 1–11. [Google Scholar] [CrossRef]
- Tanaka, K.; Kobayashi, T.; Sakurai, Y.; Nakagawa, Y.; Ishikawa, M.; Hoshi, M. Irradiation Characteristics of BNCT using Near-Threshold 7Li(p,n)7Be Direct Neutrons: Application to Intra-Operative BNCT for Malignant Brain Tumors. Phys. Med. Biol. 2002, 47, 3011–3032. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, W.A.G.; Wittig, A.; Moss, R.; Nakagawa, Y. (Eds.) Neutron Capture Therapy; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U. Design of an Epithermal Column for BNCT Based on D–D Fusion Neutron Facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 574, 363–369. [Google Scholar] [CrossRef]
- Wang, S.; Blaha, C.; Santos, R.; Huynh, T.; Hayes, T.R.; Beckford-Vera, D.R.; Blecha, J.E.; Hong, A.S.; Fogarty, M.; Hope, T.A.; et al. Synthesis and Initial Biological Evaluation of Boron-Containing Prostate-Specific Membrane Antigen Ligands for Treatment of Prostate Cancer Using Boron Neutron Capture Therapy. Mol. Pharm. 2019, 16, 3831–3841. [Google Scholar] [CrossRef] [PubMed]
Operation Parameter | Coaxial (d-7Li) Neutron Tube |
---|---|
Dimensions of D− emitter | 120 mm (diam) by 2.5 mm (height) |
Peak D− ion current (mA) | 30 |
Peak D− ion beam energy (MeV) | 1 |
Peak ion beam power (kW) | 30 |
Average beam power for 1% DF (kW) | 0.3 |
Dimensions of Li target | 2 mm (diam) by 2 mm (height) |
Surface area of Li target (cm2) | 0.13 |
Average beam power density for 1% DF (kW/cm2) | 2.3 |
Peak neutron yield (n/s) | 1.2 × 1013 |
Average neutron yield for 1% DF (n/s) | 1.2 × 1011 |
(d-7Li) Neutron Tube for 225Ra Production | (p- 7Li) Neutron Tube for 99Mo Production | |
---|---|---|
Production reaction | 226Ra(n, 2n)225Ra | 98Mo(n, γ)99Mo |
Volume of sample | 2.5 mm diam × 10 mm long | 2.5 mm diam × 10 mm long |
Number of atoms (N) | 6.7 × 1020 | 3.1 × 1021 |
Reaction cross-section (σ) | 2.25 × 10−24 cm2 | 7 × 10−24 cm2 |
Ion beam power (10% DF) | 1 MV, 100 mA of D− ions | 1.9 MV, 100 mA of H− ions |
Average neutron yield | 4 × 1012 s−1 | 1.5 × 1011 s−1 |
Average neutron flux on sample (Φ) | 2.6 × 1012 cm−2 s−1 | 1.9 × 1011 cm−2 s−1 |
Radioisotope yield (Y = N*σ*Φ) | 3.9 × 109 s−1 | 4.2 × 109 s−1 |
Decay constant (λ) | 5.38 × 10−7 s−1 | 2.9 × 10−6 s−1 |
Activity of radioisotope (λ*Y*3.6 × 105) (after 100 h irradiation) | 2.1 mCi 227Ra impurities < 1% | 120 mCi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, K.-N. New Mini Neutron Tubes with Multiple Applications. J. Nucl. Eng. 2024, 5, 197-208. https://doi.org/10.3390/jne5030014
Leung K-N. New Mini Neutron Tubes with Multiple Applications. Journal of Nuclear Engineering. 2024; 5(3):197-208. https://doi.org/10.3390/jne5030014
Chicago/Turabian StyleLeung, Ka-Ngo. 2024. "New Mini Neutron Tubes with Multiple Applications" Journal of Nuclear Engineering 5, no. 3: 197-208. https://doi.org/10.3390/jne5030014
APA StyleLeung, K. -N. (2024). New Mini Neutron Tubes with Multiple Applications. Journal of Nuclear Engineering, 5(3), 197-208. https://doi.org/10.3390/jne5030014