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Abstract: The last decade has seen the development and application of data-driven methods taking
off in nuclear engineering research, aiming to improve the safety and reliability of nuclear power. This
work focuses on developing a reinforcement learning-based control sequence optimization framework
for advanced nuclear systems, which not only aims to enhance flexible operations, promoting the
economics of advanced nuclear technology, but also prioritizing safety during normal operation.
At its core, the framework allows the sequence of operational actions to be learned and optimized
by an agent to facilitate smooth transitions between the modes of operations (i.e., load-following),
while ensuring that all safety significant system parameters remain within their respective limits.
To generate dynamic system responses, facilitate control strategy development, and demonstrate
the effectiveness of the framework, a simulation environment of a pebble-bed high-temperature
gas-cooled reactor was utilized. The soft actor-critic algorithm was adopted to train a reinforcement
learning agent, which can generate control sequences to maneuver plant power output in the range
between 100% and 50% of the nameplate power through sufficient training. It was shown in the
performance validation that the agent successfully generated control actions that maintained electrical
output within a tight tolerance of 0.5% from the demand while satisfying all safety constraints.
During the mode transition, the agent can maintain the reactor outlet temperature within ±1.5 °C and
steam pressure within 0.1 MPa of their setpoints, respectively, by dynamically adjusting control rod
positions, control valve openings, and pump speeds. The results demonstrate the effectiveness of the
optimization framework and the feasibility of reinforcement learning in designing control strategies
for advanced reactor systems.

Keywords: advanced reactors; small modular reactors; machine learning; reinforcement learning;
control sequence optimization

1. Introduction

Reliable and sustainable energy is a cornerstone for numerous aspects of modern
society. Nuclear energy emerges as a convincing solution to both aspects due to its ability to
offer a consistent and uninterrupted delivery of energy (reliability) without compromising
environmental integrity (sustainability). As the nuclear industry is motivated to innovate
advanced reactor systems to address projected energy needs, reducing costs associated
with construction, operational, and maintenance while adhering to safety protocols be-
comes crucial [1]. To this end, many advanced reactor designs envision their deployment
on the multi-unit configuration of small modular reactors (SMRs) to enhance economic
competitiveness, and the SMR plant operation must be simplified and optimized to reduce
the cost without deteriorating the system’s safety. One way to achieve this goal is to
increase the overall effectiveness of operational staff by implementing a comprehensive
approach that combines a higher degree of reliability and autonomy in the control system
and a well-informed decision-making process. In this pursuit, data-driven techniques have
gained prominence, offering innovative solutions to complex challenges across various
domains within the nuclear industry [2].
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Typically, operating a nuclear power plant (NPPs) necessitates a great amount of
complicated control processes due to the intrinsic complexity of the system. Historically,
conventional methods such as proportional–integral–differential (PID) controllers, pro-
grammable logic controllers (PLCs), and field programmable gate arrays (FPGAs) have
been utilized to automate these tasks [3–5]. However, these approaches have their respec-
tive limitations. PID controllers, originally designed for simpler systems with single control
variables, often struggle to cope with the complexities of NPPs, leading to issues such as
overshooting and requiring manual tuning for optimal performance in different operating
conditions. It was shown in a previous study that, in an NPP where safety parameters
are sensitive to control actions, conventional single-variable control approaches, like the
PID, struggle to manage intricate relationships between variables [6]. PLCs are designed
for discrete control applications, emphasizing reliability and ease of use, but this limits
their processing power. As a result, they may struggle with highly complex control tasks or
those requiring real-time decision-making with fast response times [4]. Meanwhile, offering
a high order of complexity, FPGAs can complete complicated tasks with ease, but this
comes with higher costs and requirements in terms of having an in-depth understanding of
hardware design and digital logic [7].

In recent years, model-free deep reinforcement learning (RL), inspired by human
trial-and-error learning, has been studied across industries [8]. With the use of multiple
deep neural networks as universal approximators [9], RL shows promising potential as
an alternative approach for automating diverse decision-making and control tasks [10,11].
Additionally, with contemporary advancements in computing power, data, and deep
learning research, RL-based controllers surpass traditional approaches in tasks such as
devising operational strategies, real-time decision-making, and optimization systems.
RL-based controllers have found applications in different domains, including robotics [12],
autonomous vehicles [13,14], power management [15], and transportation [16].

RL control-based approaches offer the potential to significantly reduce the operational
and maintenance costs of NPPs through several key advantages. These include optimized
decision-making capabilities, allowing RL algorithms to learn and adapt control strategies
that maximize system performance. By automating standard tasks traditionally conducted
by humans, RL-based controllers reduce labor costs and mitigate the risk of human errors.
Moreover, RL algorithms can be trained for predictive maintenance, enabling the system
to anticipate failures and plan maintenance activities proactively, thereby avoiding costly
unplanned downtime. RL-based controller offers adaptive control, which is superior to
conventional controllers using fixed-term control. They can adjust plant operations in real
time based on fluctuations in power demand. This helps maintain stable reactor conditions
and prevents unsafe situations that might arise from abrupt load change. In Li et al. [17],
the reactor-coordinated control systems were modeled and optimized with the deep de-
terministic policy gradient (DDPG) algorithm to enhance control effectiveness, showing
a superior performance compared with traditional methods. Furthermore, Lee et al. [18]
proposed an RL-based controller for a start-up operation. The controller was validated
using a compact nuclear simulator (CNS), successfully controlled parameters within limits,
and identified an acceptable operation path for increasing reactor power from 2% to 100%.

Inspired by the previous achievement in the application of RL in controlling NPPs, this
work explores the application of a control sequence optimization (CSO) framework based
on RL with the soft actor–critic (SAC) [19] to support operations and reduce the associated
operational costs for next-generation reactors. The CSO framework aims to generate and
optimize a series of operational actions to transition the reactor from an initial state to a
desired state, while ensuring all system variables remain within predefined thresholds.
More specifically, this work concentrates on the development and demonstration of load-
following operations, which are regarded as one of the key features distinguishing SMRs
from conventional large light water reactors (LWRs).

This article is structured as follows. The first section provides an overview of the back-
ground and outlines the main objectives of the study. Section 2 begins with the motivation
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and core principles behind the CSO framework, followed by the description of a general
PB-HTGR plant model with various key system components. Then, the operational goals,
control variables, and the inputs and outputs of the RL training environments are discussed.
Additionally, the RL-based controller development approach is presented with details
of the customization of the SAC algorithm and the training process. Section 3 presents
the validation and analysis of the results obtained from the RL-based controller. Finally,
Section 4 summarizes the findings and discusses potential directions for future research.

2. Methodology
2.1. Overview of Control Sequence Optimization Framework

This section is dedicated to the development of a framework that optimizes the control
sequence for the load-following operations of a general PB-HTGR. A control sequence
is defined as a series of operational actions to bring the reactor from an initial state to
an arbitrarily desired state. In the attempt to find the optimal control sequence, the
“combinatorial optimization” (CO) problem is solved based on the operator’s experience
and judgment. Since the search space for CO is finite by definition, an optimal solution
always exists [20].

Many traditional algorithms for solving CO problems require hand-crafted heuristics
to find a solution. Such heuristics are designed by domain experts and may often be sub-
optimal due to the hard nature of the problems. Genetic algorithm (GA) [21] and simulated
annealing (SA) [22] represent two widely used approaches to solve static optimization
problems where they find the optimal solution based on a fixed set of conditions. They
efficiently explore the solution space and converge to the global optimum. However, these
techniques are prone to be inferior when dealing with sequential CO problems, where the
best decision at each step correlates with the outcome of the previous steps. GA and SA
might become stuck in suboptimal solutions that worked well initially but become obsolete
as the sequence progresses due to their inability to adapt dynamically. The Markov decision
process (MDP) [23–25]) is specifically designed for such situations. It considers the dynamic
nature of the problem, where each decision influences the future state. Mathematically, it
can be defined by a tuple (S, A, P, R), explained as follows:

• S is the set of states representing all possible situations the system can be in.
• A is the set of actions the decision maker can take.
• P is the state transition probability function, defined as P(s′ | s, a) = Pr(st+1 = s′ |

st = s, at = a). It represents the probability of transitioning to state s′ given that action
a is taken in state s.

• R is the reward function, defined by R(s, a, s′), which assigns a real value to each
state–action–state triplet, representing the immediate reward received after transition-
ing from state s to state s′ by taking action a.

RL proposes a promising approach to tackle MDP in finding the optimal solution
by training an agent in a supervised or self-supervised manner [26,27]. To apply RL to
solve CO problems, the problem is modeled as a sequential decision-making process,
where the agent interacts with the environment by performing a sequence of actions to
find a solution. Particularly, within the scope of this paper, an agent interacts with the
PB-HTGR environment over a series of discrete time steps. At each time step t, the agent
observes a state of the plant st and then selects an action at, which controls signals based on
some policy π. The plant transitions to a new state st+1 according to a transition function
P(st+1 | st, at), and the agent receives a reward rt+1 according to the action it takes, which
is based on this transition. The agent’s goal is to learn an optimal policy π∗ that maximizes
the expected cumulative reward over time R, which, is mathematically expressed as

R = max
π

Eπ

[
∞

∑
t=0

γtRt

]
, (1)
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where π is a policy mapping states to actions; Eπ denotes the expectation under policy π;
Rt is the reward received at time step t, and γ is the discount factor.

In this work, the dynamic responses of the reactor system are modeled as the interac-
tive environment, utilizing the system “digital twin” described in the following section.
Each state encompasses both control variables and the target power output. The agent is
trained to choose actions from the action space and evaluate their effectiveness based on a
pre-defined reward function with imposed safety constraints. The subsequent subsections
provide the development of the digital twin with a detailed description of the training
environment, the RL algorithm employed, and the training process in this study.

2.2. PB-HTGR Training Environment

To provide a training environment for the RL algorithm within the CSO framework,
data are generated from a coupled PB-HTGR core/system model using the system analysis
module (SAM) and Simulink. SAM is a modern system analysis tool being developed at
Argonne National Laboratory (ANL) for advanced non-LWR safety analysis, being used
to model the core dynamics of a PB-HTGR [28]. The reactor core is the systems constant
heat source that is controlled by the amount of positive or negative reactivity introduced
to the system [29], mimicking the movement of control rods. Simulink is a MATLAB
library that models the systems of ordinary differential equations (ODEs) [30], which is
used to model the balance of plant (BOP) for electricity generation, the once-through steam
generator (OTSG) that transfers heat from the primary to the secondary, and the control
system [31]. The variables of interest are classified as manipulated variables (MVs) or
controlled variables (CVs). MVs are the subset of variables that the operators can directly
control and only change with operator intervention, including the control rod position,
turbine control valve, circulator pump speed, feedwater pump speed, and condenser pump
speed. CVs are the subset of variables that have safety-related implications if they exceed a
pre-defined threshold, including the reactor power, outlet reactor temperature, inlet reactor
pressure, primary mass flow rate, steam temperature, steam pressure, secondary mass flow
rate, condenser pressure, and electrical power. Table 1 lists the one-to-one pairing of MVs
and CVs. For load-following operations, PID controllers are introduced to control the plant
during state transitions using MVs and maintain all CVs within safety limits. The CSO
framework aims to replace these PID controllers with improved RL-based controllers.

Table 1. Simulink proposed control scheme mapping that has the MV directly controlling the CV or
controlling the CV through an IV.

Manipulated Variable Intermediate Variable Controlled Variable

Control rod position Reactor power Outlet reactor temperature
Circulator pump speed Primary mass flow rate Main steam pressure
Feedwater pump speed Secondary mass flow rate Main steam temperature

Turbine steam valve - Electrical load
Condenser pump speed - Condenser pressure

2.2.1. Reactor Model

The generic 200 MW PB-HTGR SAM model openly available on the Idaho National
Laboratory (INL) virtual test bed is adopted to capture the dynamics of the reactor during
state transitions [32]. A PB-HTGR is specifically chosen over the other generation IV
designs due to the core having low excess reactivity, allowing for online refueling, high
efficiency, inherent safety, and operating at high temperature for process heat. The fuel
within the PB-HTGR core comprises billiard ball-sized graphite pebbles that contain about
19,000 specially coated tristructural isotropic (TRISO) uranium fuel particles enriched to
15.5%. This PB-HTGR design is cooled with pressurized helium gas at 6 MPa, the inlet
and outlet core temperatures are 260 °C and 750 °C, respectively, the nominal helium mass
flow rate at full power is 78.6 kg/s, and the reactor power is calculated using the point
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kinetics equation (PKE) with temperature reactivity feedback from the fuel, moderator, and
reflector regions.

Due to the high demand for training data in the data-driven approach, a feedforward
neural network (FFNN) surrogate of the SAM PB-HTGR core model is developed to replace
the computationally expensive SAM core model and accelerate the training process. The
surrogate was built using Tensorflow and imported to Simulink directly. FFNNs are deep
neural networks that propagate information in a single direction from input to output with
tuned weights and biases learned from training data generated with SAM [33]. The training
database contained 5632 total samples ranging from 25% to 100% reactor power split into
60% for training, 20% for validation, and 20% for testing following 5-fold cross-validation.
Specifically, the dataset is randomly split into five subsets, where we train on four and
evaluate the trained model on one. We then iterate five times with a different subset
reserved for evaluation to complete the model validation. The advantages of this training
approach are overcoming overfitting by better estimating the model’s performance on
unseen data and is data-efficient since all available data are used during model training and
hyperparameter tuning. The surrogate is trained to predict the outlet reactor temperature,
pressure, mass flow rate, and thermal power given inlet temperature, pressure, mass flow
rate, and control rod reactivity. After optimizing the hyperparameters to minimize the
mean squared error following a grid search approach [34], the model was successful in
explaining over 99.8% of the variance seen in the data with respective errors being less than
2% for each output variable.

2.2.2. Once-Through Steam Generator

To transfer the heat generated within the PB-HTGR core to the secondary, an OTSG is
modeled using a nonlinear lumped parameter modeling approach that reduces the OTSG
into discrete nodal volumes with average homogeneous physical parameters. An OTSG
includes economizer, evaporator, and superheater regions into a single module shell-and-
tube type heat exchanger that converts feedwater into steam using heat from the primary.
On the tube side, the feedwater on the secondary enters the OTSG in the economizer region
subcooled and begins to be heated as it flows upwards until exiting the top of the OTSG as
superheated steam. To calculate the outlet pressure, the inlet pressure is decreased by the
pressure drop due to friction, elevation, acceleration, and inlet/outlet form losses. Thus,
the OTSG Simulink model outputs steam temperature, pressure, and mass flow rate with
inputs of reactor outlet temperature, pressure, and mass flow rate.

2.2.3. Balance of Plant

Next, the BOP is modeled using Simulink to simulate the thermal energy conversion
into electricity. The BOP model from [35] is used and includes a nozzle chest, high-pressure
turbine (HPT), moisture separator, steam reheater, low-pressure turbine (LPT), condenser,
condenser pump, feedwater pump, and high/low-pressure feedwater heaters. Using the
steam valve, the steam coming from the OTSG is split between the nozzle chest and the
reheater. The nozzle chest guides the incoming steam into separate turbine inlet nozzles
of the HPT to rotate the main shaft and perform the work. After the HPT, the steam is
dried using the moisture separator and reheater before entering the LPT to again rotate the
main shaft. The work performed on the main shaft by the HPT and LPT is converted into
electricity in the generator. Exiting the LPT, the condenser cools the exhaust steam, where
cooling water from an external source is used to condense the steam. The condensate is then
pumped into the low-pressure heater using a condenser pump. Next, the flow proceeds
into the feedwater pump before entering the high-pressure heater to be heated once again
before returning to the OTSG to repeat the process. Thus, the BOP Simulink model outputs
electrical power with inputs of steam temperature, pressure, and mass flow rate.
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2.2.4. Plant Control System

The PB-HTGR control system is tasked to control various system parameters to specific
setpoints using PID controllers. These controllers combine one or multiple optimized gains
to achieve stable and quick response to perturbations [3]. After being tuned, PID controllers
use the difference between the current CV value and its setpoint to adjust actuators to
maintain the CVs at their target value. The PB-HTGR control system utilizes single-level
PID controllers to control a CV directly and cascaded PID controllers to control a CV through
an intermediate variable (IV). An open-loop test was performed in a previous study to
identify the optimal MV/CV pairings, as shown in Table 1 [36]. In the current settings, the
control rod position directly controls the reactor thermal power, which influences the outlet
reactor temperature. The circulator pump speed directly changes the mass flow rate in
the primary loop and the OTSG heat transfer, which in turn impacts the steam pressure
through the water/steam thermodynamic properties. The feedwater pump speed directly
controls the mass flow rate in the secondary loop and impacts the OTSG heat transfer, which
controls the steam temperature. Finally, the turbine steam valve and condenser pump speed
controllers directly control the system electrical power and condenser pressure, respectively.

To evaluate the control system, a 100%–25%–100% load-following scenario is per-
formed at the maximum rate of 5%/min [37]. Specifically, the load-following scenario is
performed with 1250 s at 100% electrical power, down-ramp from 100% to 25% electrical
power over 900 s, 1500 s at 25% electrical power, up-ramp from 25% to 100% electrical
power over 900 s, and finally 1250 s at 100% electrical power. After performing the sim-
ulation, the electrical power is shown in Figure 1 with the actual variable value shown
in green and the desired variable value shown in red. To accomplish the load-following
operation, the control system changes each MV in the same direction as the electrical power.
When beginning the down-ramp portion of the transient from 100% to 25%, the turbine
steam valve begins to close, redirecting a larger proportion of steam towards the reheater.
With less steam entering the turbine, the electrical power begins to fall and the feedwater
temperature increases. Increasing the feedwater temperature decreases feedwater density,
which decreases the mass flow rate on the secondary. The decreased secondary mass flow
rate causes the heat transfer and pressure drop across the OTSG to decrease. Decreasing
the heat transfer across the OTSG causes the steam temperature to decrease and the cold
helium temperature to increase. Increasing the cold helium temperature decreases helium
density and decreases the mass flow rate in the primary. A decrease in the primary mass
flow rate reduces the heat removal from the fuel which causes the overall core temperature
to increase and the reactor power to decrease due to reactivity feedback. To maintain
the CVs at their respective setpoints, the circulator pump speed decreases to combat the
increase in steam pressure and the feedwater pump speed decreases to combat the decrease
in steam temperature by manipulating the heat transfer across the OTSG. To control the
reactor outlet temperature, the control rods begin to be inserted into the core to maintain
its setpoint.

To have more confidence in the modeled physics within the Simulink PB-HTGR model,
the Simulink load-following results are compared to those presented in [36]. The work
in Brits [36] modeled their PB-HTGR system using SimuPACT to conduct the same load-
following scenario and the Simulink response is shown to produce the same MV and CV
trends. SimuPACT is an integrated software platform developed by SimGenics that enables
the development of simulators for power and process plants. SimuPACT utilizes Flownex
as its flow solver to accurately simulate the transients and the corresponding system
response. Flownex is an NQA1 quality assurance flow solver with nuclear accreditation
that utilizes point kinetic equations coupled with thermal-hydraulic models to capture
reactivity feedback during a transient. More detail concerning the performance of the
Simulink model and comparisons with the SimuPACT model can be found in [38]. Since
the Simulink model represents the modeled physics well throughout the load-following
scenario when compared to the SimuPACT results, then one can conclude that the PB-HTGR
Simulink model is an appropriate training environment for the CSO framework.
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Figure 1. PB-HTGR electrical power during a 100%–25%–100% load-following scenario. The red
curve is the desired electrical power and the green curve is the actual output.

2.3. Interactive Environment for RL Agent

The CSO framework in this study is proposed to leverage an RL agent to substitute
traditional PID controllers. The main focus is on the load-following scenarios where the
objective is to regulate the power output from 100% to a random target level between 50%
and 100% within a 500 s timeframe. This characteristic stems from our decision to prioritize
a fixed time frame over a constant rate of change, which results in the maximum rate of
change occurring when the end level reaches 50%. The RL agent will be trained on the data
generated from simulating this scenario, enabling it to learn an optimal control strategy
that dynamically adapts to various operating conditions.

The PB-HTGR environment used in this problem is based on the FFNN-based
SAM/Simulink surrogate model outlined previously. The framework utilized for creating
the environment is the OpenAI Gym package [39]. A single operation will be simulated for
2500 s with a 1.0 s time interval. The average computational time required to complete a
full operation is 750 s when using a single core on the Dual AMD EPYC 7452 processor.
In addition to the electric power load-following, setpoints are configured for CVs during
operations, as displayed in Table 2.

Table 2. Reference setpoints during load-following operations.

Variable Setpoint

Outlet reactor temperature (°C) 750
Inlet reactor pressure (MPa) 6.0

Steam temperature (°C) 566
Steam pressure (MPa) 16.7

The PB-HTGR environment follows the standard RL scheme where the agent interacts
with the environment by providing actions and receiving the corresponding state updates
and rewards. Mathematically, the agent’s action is represented as a five-dimensional vector
a normalized within the range [−1.0, 1.0], denoted by a = [a1, a2, a3, a4, a5], where each
element corresponds to a specific control signal for the MVs detailed in Table 3. Instead
of directly using the control rod position, the system employs its corresponding reactivity
value as input. This conversion, along with normalization, ensures that the signals remain
within a suitable range and stabilize the performance.
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Table 3. Actions for manipulated variables in the interactive PB-HTGR environment.

Manipulated Variable Change per Action Upper Limit Lower Limit

Reactivity insertion [−4× 10−6, 4 × 10−6] 1.340 × 10−3 −0.720 × 10−3

Circulator pump speed (rpm) [−1.0, 1.0] 3948 1002
Feedwater pump speed (rpm) [−0.6, 0.6] 3571 3202
Condenser pump speed (rpm) [−0.6, 0.6] 3447 3290

Turbine control valve [−5.0 × 10−4, 5.0 × 10−4 ] 0.77466 0.51249

The PB-HTGR environment defines its state as a comprehensive vector, s = [sCV, sactions,
serrors, scumulative], encompassing several key elements:

• Controlled variables: sCV = [CV1, CV2, . . . , CVn], where CVi denotes the i-th con-
trolled variable. These variables serve as the primary outputs of the underlying
SAM/Simulink surrogate model and provide insights into the system’s current state.

• Recent actions taken: The environment incorporates the agent’s most recent control
actions into the state vector, allowing the agent to learn the impact of its past decisions.
Mathematically, it can be expressed as sactions = [a1, a2, . . . , am], representing the
agent’s most recent control actions.

• Absolute errors and their cumulative values: To capture the deviation from desired
operating conditions, the state vector includes the absolute errors between the CVs
and their reference points. serrors = [e1, e2, . . . , en]. along with the cumulative sum of
these errors over time, scumulative = [c1, c2, . . . , cn]. This information helps the agent
gauge the performance of its control strategy and identify potential deviations.

The “reset” function of the PB-HTGR environment initiates each episode anew, re-
setting all internal states and randomly selecting a power level between 100% and 50%.
This variability in initial conditions challenges the RL agent to adapt and develop effective
control strategies that are versatile across diverse operating demands. Finally, to ensure
efficiency during RL agent training, the PB-HTGR environment enforces two termina-
tion conditions:

• Manipulated and controlled variable limit violation: If any of the MVs listed in Table 3
or CVs listed in Table 4 surpass their predefined upper or lower limits, the agent
terminates. This limit prevents potentially unsafe operating conditions and protects
the system from damage.

• Excessive relative error: If the relative error between the actual and setpoint values of
the desired CV exceeds 20%, the agent terminates. This criterion ensures that the agent
maintains acceptable performance and prevents significant deviations from optimal
operating points. The choice of 20% as the threshold is deliberate; it strikes a balance
between allowing the agent to learn before termination and preventing excessively
long training periods due to overly strict termination criteria.

Table 4. Identified controlled variables with respective threshold from the IEC 45-1:1991 Standard [40].

Controlled Variables Threshold Weighting Factor ω

Reactor power (MW) 202 -
Outlet reactor temperature (°C) 770 0.025

Inlet reactor pressure (MPa) 6.3 0.01
Inlet reactor mass flow (kg/s) 86 -

SSSG 1 Outlet temperature (°C) 570 0.05
SSSG 1 Outlet pressure (MPa) 17.3 0.01
SSSG 1 Inlet mass flow (kg/s) 8.4 -

Electrical power (%) - 0.5
Condenser pressure (MPa) - -

1 SSSG: Secondary side steam generator.
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Reward Function

The reward function within the framework of RL acts as guidance for the agent,
directing its learning process and influencing its actions to reach desired goals. Reward
algorithms in this framework aim to minimize the gap between the current state and the
desired state, akin to minimizing the difference between the surrogate model’s output
and the setpoint values. Additionally, the agent strives to achieve goals with minimal
action taken, leading to a penalty term that discourages excessive action across all control
variables, promoting efficient and goal-oriented learning. Moreover, the reward system
encourages the agent to prolong its survival, ensuring a non-zero reward at each time step.
The termination condition marks the worst-case scenario, while successful survival until
the end yields a substantial reward. Combining with the termination conditions previously
mentioned, the reward function for state st can be formulated as follows:

Rt = exp

(
−∑

i
ωie2

i

)
− 0.2 ∑

t
a2

t − 100F + 1000M, (2)

where:

– ei: error between the actual value and the desired value for controlled variables i,
time-dependent t needs to be added;

– ωi: weighting factor for each CV as shown in Table 4;
– at: action taken at time step t, in the range [−1.0, 1.0].

The F and M terms in Equation (2) are step functions defined as

F =

{
1 if termination condition is satisfied
0 otherwise

, and

M =

{
1 if the agent reaches the end of the simulation (i.e., 2500 s)
0 otherwise

.

The weights in Equation (2) and Table 4 are determined through a process of trial and
error, considering both the significance and sensitivity of the variables. These weights are
iterated over numerous initial runs before converging to optimal values.

2.4. Soft Actor–Critic Agent

As part of the nature of the CO problem, the most tedious and challenging issue of
RL is to deduce an optimized policy function that ensures that maximum rewards are
achievable for all given states. Introduced in recent studies [41], the SAC algorithm was
utilized in this study to find the optimal policy function. Unlike traditional RL algorithms,
such as Q-learning and policy gradient methods, SAC offers several distinct features that
make it well suited for various applications in complex environments. Notably, SAC
excels in achieving a balance between exploration and exploitation, and it efficiently
handles continuous action spaces. Unlike algorithms such as deep Q-networks (DQN) and
proximal policy optimization (PPO), which frequently encounter challenges with high-
dimensional and continuous action spaces [42]. The structure of the SAC agent used in
this study is described in Figure 2. It is noteworthy that the SAC architecture utilizes two
critic networks to improve stability and mitigate the overestimation of the critic value.
Moreover, during actor updates, multiple critics provide additional feedback on the quality
of actions, allowing the actor to explore a wider range of actions and learn more effectively.
Additionally, a target value network is employed to prevent the value network from being
solely affected by the policy updates. As a result, a stable reference for the value updates
will make the training process smoother.
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Figure 2. SAC agent architecture used in this study.

Finally, the hyperparameter settings (model complexity, learning rate, action noise,
etc.) for the SAC agent are determined through a comprehensive grid search, aimed at
identifying optimal values within the hyperparameter space. This process systematically
explores various combinations of hyperparameters to assess their impact on the agent’s
performance. The resulting hyperparameter configuration is given in Table 5.

Table 5. SAC agent training parameters.

Parameter Value

Actor–network structure 256 → 256 → 5
Learning rate 1 × 10−4

Critics network structure 256 → 256 → 5
Total episode 104

Batch size 256
Discount factor γ 0.99

Action noise 0.2
Buffer memory 106

SAC Agent Training

The RL-based CSO framework employs a single-agent training scheme, which implies
that there is only one agent that interacts with the environment. Utilizing this approach sim-
plifies the implementation and debugging process. Moreover, this approach also reduces
the computational budget, making it attractive for an investigatory study like this one.
While this scheme can be simpler to implement and is effective for straightforward tasks,
multi-agent training offers significant advantages in terms of scalability and computational
efficiency. Therefore, this approach will be adopted in future work.

Figure 3 shows the cumulative rewards during the training process. The training
concluded after approximately 2500 episodes due to an early stopping condition being met.
This condition terminates the training once the agent achieves a cumulative reward (R in
Equation (1)) of 3000 or more for 10 consecutive episodes, indicating successful convergence
towards the desired performance. Furthermore, the average survival time of the agent
throughout the operation (in the unit of operation time) is depicted in Figure 4. It can
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be seen that, initially, the training was terminated almost immediately; however, after
100 episodes, the agent began to accumulate knowledge from previous failures. By the end
of 500 episodes, the mean survival time of the agent stabilized between 1500 s and 2500 s.

Figure 3. Learning curve of the SAC agent in the CSO framework for PB-HTGR load-following
operations.

Figure 4. Number of steps that the SAC agent survived during training.

3. Results and Analysis

To assess the effectiveness of the trained RL agent, it is tested on a load-following
operation similar to but different from the training scenario, as shown in Figure 5. The
transient begins with the reactor operating at full power, followed by a 500 s ramp change
to 80% of full power. After a stable period over 500 s, the power demand increases linearly
back to full power again. The success of the operation conducted by the agent is measured
by the level of agreement of the actual electric output compared with the demand curve
throughout the 2500 s of operation.
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Figure 5. Test scenario of the load-following operation.

Figures 6 and 7 offer insights into the agent’s control strategy during the operation.
Figure 6 depicts the adjustments made to the reactor’s reactivity (black line), which plays
a crucial role in regulating power levels. The initial non-zero reactivity value reflects the
external reactivity with a value of 0.00131 (i.e., from control rod) required to maintain 100%
power in the beginning. It remains constant to ensure operation within the standard range
until a decline in target power level is noticed at 500 s. The agent responds to these changes
by adjusting reactivity. As the power decreases, the reactivity becomes more negative,
reaching a value of 0.00101 after 1000 s. At this moment, with the power level sustained
at 80%, the reactivity exhibits initial oscillations before stabilizing at 0.00101. Upon the
power’s increase towards full capacity, less reactivity is introduced, leading to a gradual
shift towards a more positive value. Eventually, the reactivity stabilizes at 0.00130. This
observation aligns with the trend displayed in electrical power load change, as reactivity
has a direct impact on both the outlet reactor temperature and reactor power, as outlined
in Table 1.

Additionally, the dash-line in Figure 6 illustrates the corresponding changes in the
control valve opening fraction, which dictates steam consumption. The trend closely
follows that of the inserted reactivity, initiating at 0.75557, declining to 0.72694 to reduce
the power level to 80%, and eventually reaching 0.75891 upon achieving full power. The
adjustments made by the SAC agent to the control valve opening ratio demonstrate its
ability to effectively manipulate this critical variable to achieve the desired power profile,
given its direct influence on the electrical load through controlling the steam output.

Figure 6. Temporal changes in reactivity and control valve.
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Figure 7. Pump speed changing during test operation.

Figure 7 illustrates the pump speed-controlling signal generated by the agent through-
out the test. The adjustments made by the agent to the feedwater pump and circulator
pump exhibit a trend similar to that of the electrical load, which results from their influence
on steam temperature and pressure, respectively. Notably, the pump speed of the feedwater
pump experiences a larger change compared to the circulator pump because of the greater
sensitivity of steam temperature relative to pressure. Initially set at 3896 rpm, the feedwater
pump’s speed undergoes a linear decrease over 500 s at a rate of 0.868 rpm/s, eventually
stabilizing at 3875 rpm upon reaching full power level. On the other hand, the speed of
the circulator pump begins at 3558 rpm, gradually decreasing to 3493 rpm as the power
diminishes and stabilizes at 80%, before ultimately returning to 3556 rpm by the conclusion
of the operation. In contrast, the speed of the condenser pump starts at 3401 rpm and
experiences a slight increase to 3435 rpm as the power decreases to 80%. It then decreases
and stabilizes at 3425 rpm as the power returns to full capacity. This suggests that the
condenser pressure may not play a significant role in controlling the output steam, which
directly impacts the electrical load. Instead, its effect is more noticeable on the inlet pressure
of the steam. Overall, the agent effectively generates control signals for pump speeds to
ensure sufficient coolant circulation, thereby contributing to operational stability while
maintaining safety constraints within acceptable ranges. One may notice that while slight
discrepancies exist between the initial and final values for the 100% power transition, it
indicates that there are several ways to achieve a steady state, where the absolute difference
between electric power and the set-point value is below 0.05% in this context. With these
control signals in place, the desired MVs with their respective setpoints are analyzed.

As depicted in Figure 8, the electric power closely followed the desired trend through-
out the test, with a maximum deviation of less than 0.5%, demonstrating the agent’s
effectiveness in accurately tracking the intended power profile. The reactor outlet tempera-
ture remained tightly controlled within a ±1.5 °C band around the setpoint, showcasing
the agent’s ability to precisely manage the reactor’s thermal behavior, as shown in Figure 9.

Furthermore, the steam pressure was effectively regulated, maintaining values close
to their respective setpoints with absolute errors of 0.1 MPa, as depicted in Figure 10,
highlighting its capability to keep the monitored variables closed to the setpoint without
violating safety limits. Finally, the RL framework empowers the agent to maintain the
temperature within a ±1.5 °C range of the setpoint as shown in Figure 11. This indicates
the agent’s success in effectively controlling the steam temperature and pressure, despite
the inherent difficulty posed by their high sensitivity to changes in pump speeds and heat
transfer across the OTSG.
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Figure 8. Comparison of the actual and target trend of electric output.

Figure 9. Outlet reactor temperature comparison during the test load-following operation.

Figure 10. Steam pressure comparison during the test load-following operation.
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Figure 11. Steam temperature comparison during the test load-following operation.

4. Conclusions and Future Work

In this study, a prototype CSO framework that aims to improve the reliability, au-
tonomy, safety, and economical competitiveness of advanced reactor technology was
investigated. In its current state, the framework seeks to generate and execute a series of
optimized operational actions to transition the PB-HTGR plant through load-following
scenarios while maintaining all safety parameters within pre-defined thresholds.

The proposed framework utilizes the SAC RL algorithm and was trained on dynamic
system response data from a PB-HTGR digital twin. The agent underwent training on
ramp change in electric output between full power and half power, and was subsequently
validated on a typical 100%–80%–100% power maneuver scenario. The control signals
generated by the agent effectively maintained all MVs within a tight range of their re-
spective setpoints, demonstrating the framework’s capability for precise control during
load-following operations. It was able to match electric output to the target value within a
0.5% deviation while adhering to safety thresholds. By precisely adjusting CVs as reactivity,
valve positions, and pump speeds, it maintained the reactor temperature within a tight
band of ±1.5 °C and steam pressure within 0.1 MPa of their respective safe operating
limits. This is indicative of the framework’s ability to enhance the overall system safety by
widening safety margins while maintaining stable operation. It also showcases its capa-
bility to manage intricate relationships between variables in a high-dimensional space in
complex systems like HTGRs, outperforming single-variable control approach such as PIDs.
Additionally, unlike traditional CO solver such as GA and SA, RL offers the potential for
transfer learning—the ability to train an agent on one system and apply that knowledge to
a similar system. This would significantly decrease the time required for training RL agents
for a new system in comparison to the thorough fine-tuning required for PIDs. Overall,
this suggests that the CSO framework is highly promising for implementing autonomous
control systems, leveraging its adaptability and learning capabilities to enhance operational
efficiency and effectiveness.

While the developed RL framework using the SAC agent demonstrates success in
smoothly transitioning HTGR through simple load-following scenarios, additional studies
are necessary before practical implementations are possible. The most desired improvement
lies in expanding the controllable power range. This could be achieved by dynamically
adjusting the maximum values for control variables at each timestep, allowing them to
adapt to a wider operating range while adhering to safety and operational constraints. In
addition, the current approach to handling the continuous/discrete action space can be
enhanced by implementing a more robust scheme based on the nature of each controllable
component. This could potentially improve the system’s adaptability and performance in
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diverse operating scenarios for broader applications in the future. Finally, the feasibility
of adopting transfer learning for control system development using the RL framework
requires further studies.
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