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Abstract: This work introduces the mathematical framework of the novel “First-Order Comprehensive
Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differential Equations” (1st-CASAM-
NODE) which yields exact expressions for the first-order sensitivities of NODE decoder responses
to the NODE parameters, including encoder initial conditions, while enabling the most efficient
computation of these sensitivities. The application of the 1st-CASAM-NODE is illustrated by using
the Nordheim–Fuchs reactor dynamics/safety phenomenological model, which is representative of
physical systems that would be modeled by NODE while admitting exact analytical solutions for
all quantities of interest (hidden states, decoder outputs, sensitivities with respect to all parameters
and initial conditions, etc.). This work also lays the foundation for the ongoing work on conceiving
the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary
Differential Equations” (2nd-CASAM-NODE) which aims at yielding exact expressions for the second-
order sensitivities of NODE decoder responses to the NODE parameters and initial conditions while
enabling the most efficient computation of these sensitivities.

Keywords: neural ordinary differential equations (NODE); comprehensive adjoint sensitivity analysis
methodology for NODE (1st-CASAM-NODE); Nordheim–Fuchs reactor safety model; sensitivity
analysis for model features (1st-FASAM-N); exact sensitivities

1. Introduction

Concepts of dynamical systems theory have been frequently used to improve neural
network performance [1–3] but Neural Ordinary Differential Equations (NODE) appear to
have been formally introduced by Chen et al. [4]. NODE provide an explicit connection
between deep feed-forward neural networks and dynamical systems and are considered to
provide a bridge between modern deep learning and classical mathematical/numerical
modeling. NODE provide a flexible trade-off between efficiency, memory costs, and
accuracy. The approximation capabilities [5,6] of NODE are particularly useful for time-
series modeling [4,7,8], generative models for continuous normalizing flows [4,9], and
modeling/controlling physical environments see, e.g., [10].

Neural ODEs are trained by minimizing a least-squares quadratic scalar-valued “loss
function” by computing its gradients with respect to the weights to be optimized using a
first-order optimizer such as “stochastic gradient descent” [11,12]. Since ODE solvers (e.g.,
Runge–Kutta solvers) perform differentiable algebraic operations, the gradients of the loss
function can be calculated by the so-called “direct method” which directly backpropagates
through the operations performed by the ODE solver. However, when the dynamics are
complex, the “direct method” can lead to an arbitrarily large number of function evaluations
for adaptive solvers while storing all of the intermediate activations during the “solving”
process, so the “direct method” becomes prohibitively memory intensive. A NODE-training
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method which is less memory intensive is the so-called “adjoint method” [13–15], which
solves an ODE (related to the original NODE) backwards in time. The direct method
is faster but is more memory intensive than the adjoint method. The one-dimensional
definite integrals, which appear when computing gradients via the “adjoint method” are
traditionally evaluated by solving them as differential equations, which considerably slows
down the training process. Evaluating these one-dimensional definite integrals by using
Gauss–Legendre quadrature (rather than solving them as ODEs) has been shown [16] to be
faster than ODE-based methods while retaining memory efficiency, thus speeding up the
training of NODE.

The gradients of the loss function are often called “sensitivities” in the literature on
neural nets and aspects of the optimization/training procedure are occasionally called
“sensitivity analysis”. But the “loss function” is of interest only for the “training” phase
of the NODE and the “sensitivities of the loss function” are driven towards the ideal
zero-values by the minimization process while optimizing the NODE weights/parameters.
Furthermore, after the NODE is optimized to reproduce the underlying physical system as
closely as possible, the responses of interest for the NODE-modeled system are no longer
a “loss function” but are various functions of the NODE’s “decoder” output. Since the
physical system being modeled by the NODE comprises itself parameters that stem from
measurements or computations, they are not perfectly well known but are afflicted by
uncertainties that stem from the respective experiments and/or computations. Hence, it
is important to quantify the uncertainties induced in the NODE decoder output by the
uncertainties that afflict the parameters/weights underlying the physical system modeled
by the NODE. The quantification of the uncertainties in the NODE decoder and derived
results (i.e., “NODE responses”) of interest require the computation of the sensitivities of
the NODE decoder with respect to the optimized NODE weights/parameters. However,
a “NODE sensitivity analysis” methodology for computing efficiently exact expressions
of decoder sensitivities with respect to the post-training optimized parameters/weights,
including with respect to the initial conditions/encoder, does not seem to be available in
the literature.

The scope of this work is to present a novel methodology for computing all of the
first-order sensitivities, exactly and exhaustively, of the responses of the post-training
optimized NODE decoder with respect to the optimized/trained weights involved in the
NODE’s decoder, hidden layers, and encoder. The general mathematical representation
of the NODE network considered in this work is presented in Section 2. As a specific
illustrative paradigm application, Section 3 presents the NODE conceptual representa-
tion of the Nordheim–Fuchs phenomenological reactor dynamics/safety model [17,18].
This paradigm illustrative model has been chosen because it is representative of typical
NODE applications while admitting closed-form analytical solutions for the quantities
of interest, including the functions describing the hidden layers, encoder, decoder, and
sensitivities of decoder responses. Section 4 presents the mathematical framework of the
novel “First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural
Ordinary Differential Equations” (1st-CASAM-NODE). Section 5 illustrates the application
of the 1st-CASAM-NODE methodology to compute all of the first-order sensitivities of
Nordheim–Fuchs model responses with respect to the underlying parameters. Specifi-
cally, Sections 5.1–5.4, respectively, illustrate the application of the 1st-CASAM-NODE
methodology for computing the first-order sensitivities with respect to the underlying
model parameters and initial conditions of the following responses: (i) the reactor’s flux;
(ii) the reactor’s energy release; (iii) the reactor’s temperature; and (iv) the reactor’s thermal
conductivity. Using the “energy-released” response as a paradigm, Section 5.5 illustrates an
alternative path for computing first-order sensitivities by applying the “First-Order Feature
Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (1st-FASAM-N) [19],
which is the most efficient procedure for computing first-order sensitivities, but which may
require the construction of a dedicated neural net for this purpose.
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2. Neural Ordinary Differential Equations (NODE): Basic Properties and Uses

A general mathematical representation of a NODE network is provided by the follow-
ing system of so-called “augmented” equations:

dh(t)
dt

= f[h(t);θ; t], t > 0, (1)

h(t0) = he(x, w), at t = t0, (2)

r
(

t f

)
= hd

[
h
(

t f

)
;φ

]
, at t = t f , (3)

where:

(i) The quantity t is a time-like independent variable which parameterizes the dynamics
of the hidden/latent neuron units; the initial value is denoted as t0 (which can be
considered to be an initial measurement time) while the stopping value is denoted as
t f (which can be considered to be the next measurement time).

(ii) The TH-dimensional vector-valued function h(t) ≜ [h1(t), . . . , hTH(t)]
† represents

the hidden/latent neural networks. In this work, all vectors are considered to be
column vectors and the dagger “†” symbol will be used to denote “transposition”.
The symbol “≜” signifies “is defined as” or, equivalently, “is by definition equal to”.

(iii) The TH-dimensional vector-valued nonlinear function f[h(t);θ; t]
≜ [ f1(h;θ; t), . . . , fTH(h;θ; t)]† models the dynamics of the latent neurons with learn-
able scalar adjustable weights represented by the components of the vector θ ≜
(θ1, . . . , θTW)†, where TW denotes the total number of adjustable weights in all of the
latent neural nets.

(iv) The TH-dimensional vector-valued function he(x, w) ≜
{

he
1(x, w), . . . , he

TH(x, w)
}†

represents the “encoder” which is characterized by “inputs” x ≜ (x1, . . . , xTI)
† and

“learnable” scalar adjustable weights w ≜ (w1, . . . , wTEW)†, where TI denotes the
total number of “inputs” and TEW denotes the total number of “learnable encoder
weights” that define the “encoder”.

(v) The TR-dimensional vector-valued function r
(

t f

)
≜

{
r1

[
h
(

t f

)
;φ

]
, . . . , rTR

[
h
(

t f

)
;φ

]}†
=

hd

[
h
(

t f

)
;φ

]
represents the vector of “system responses”. The vector-valued function

hd

[
h
(

t f

)
;φ

]
≜

{
hd

1

[
h
(

t f

)
;φ

]
, . . . , hd

TR

[
h
(

t f

)
;φ

]}†
represents the “decoder” with

learnable scalar adjustable weights, which are represented by the components of the
vector φ ≜ (φ1, . . . , φTD)

†, where TD denotes the total number of adjustable weights
that characterize the “decoder”. Each component rn

[
h
(

t f

)
;φ

]
can be represented in

integral form as follows:

rn(h;φ) =
∫ t f

t0

hd
n[h(t);φ] δ

(
t − t f

)
dt; n = 1, . . . , TR. (4)

The weights of the NODE are adjusted/calibrated by “training” the NODE, using
gradients of a scalar loss functional, denoted as L[h(t);θ; t], which is designed to represent
the deviations/discrepancies between the responses/outputs of the NODE and the “true”
values obtained from measurements (or by other means, independently of the NODE).
There are several methods for accomplishing this “training”, all of which require that
the functions underlying the NODE, i.e., h(t), f[h(t);θ; t], he(x, w), and hd[h(t);φ], be
differentiable with respect to their arguments. For complex systems, involving many
parameters, the so-called “adjoint method” [13–15] offers an optimal compromise between
memory requirements and computational intensity. This method computes the required
gradients of the loss function by evaluating the following integral:
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∂L
∂θ

=
∫ t f

t0

[a(t)]†
∂f[h(t);θ; t]

∂θ
dt , (5)

where the so-called “adjoint function” a(t) ≜ [a1(t), . . . , aTH(t)]
† satisfies the following

“adjoint equation” computed backwards in time:

da(t)
dt

= −[a(t)]†
∂f[h(t);θ; t]

∂h
, t > 0, (6)

a(t) =
∂L[h(t);θ; t]

∂h
, at t = t f . (7)

After the “training” of the NODE has been accomplished, the various “weights” will
have been assigned “optimal” values which will have minimized the chosen loss functional
L[h(t);θ; t]. These “optimal” values will be denoted using a superscript “zero” as follows:
θ0 ≜

[
θ0

1 , . . . , θ0
TW

]† and w0 ≜
[
w0

1, . . . , w0
TEW

]†. These optimal values are used to compute

the optimal values for the system responses, which will be denoted as r0
n

[
h
(

t f

)
;φ

]
. How-

ever, since the physical parameters and the initial conditions underlying the actual physical
system (which is represented by the optimized NODE) are not known exactly (because
they are actually subject to uncertainties), it follows that the optimal values obtained for the
weights are actually just nominal values that are used to compute the nominal/optimal re-
sponse values r0

n

[
h
(

t f

)
;φ

]
. The uncertainties in the various weights and initial conditions

will induce uncertainties in the system responses, which can be computed deterministically
by using the well-known “propagation of errors” methodology, originally proposed by
Tuckey [20] and subsequently extended to the sixth order by Cacuci [21].

3. Illustrative Paradigm Application: NODE Conceptual Modeling of the Nordheim–
Fuchs Phenomenological Reactor Dynamics/Safety Model

The Nordheim–Fuchs phenomenological model [17,18] describes a short-time self-
limiting power transient in a nuclear reactor system having a negative temperature coeffi-
cient in which a large amount of reactivity is suddenly inserted, either intentionally or by
accident. The response of such a reactor system can be estimated by considering that the
reactivity insertion is sufficiently large and the time-span of the transient phenomena under
consideration is of the order of the life-time of prompt neutrons. For such short times, the
effects of delayed neutrons and the local spatial variations of the neutron distribution in
the reactor can be neglected, and the heat generated during the transient remains within
the reactor. Using the notation of Lamarsh [17], the Nordheim–Fuchs paradigm model
describing such a self-limiting power transient comprises the following balance equations:

1. The time-dependent neutron balance (point kinetics) equation for the neutron flux
φ(t):

dφ(t)
dt

=
k(t)− 1

lp
φ(t), t > 0, (8)

φ(0) = φ0, t = 0, (9)

where lp denotes the prompt-neutron lifetime, k(t) denotes the reactor’s multiplication
factor, and φ0 denotes the initial (i.e., extant flux) prior to initiating the transient at time
t = 0.

2. The energy production equation:

E(t) = γΣ f

t∫
0

φ(x) dx, (10)

where γ denotes the recoverable energy per fission; Σ f ≜ σf N f denotes the reactor’s
effective macroscopic fission cross-section, where σf denotes the reactor’s equivalent



J. Nucl. Eng. 2024, 5 351

microscopic fission cross section while N f denotes the reactor’s equivalent atomic
number density.

3. The energy conservation equation:

cp[T(t)− T0] = E(t), (11)

where E(t) denotes the total energy released (per cm3) at time t in the reactor since the
onset of reactivity change; cp denotes the specific heat (per cm3) of the reactor.

4. The reactivity–temperature feedback equation: k(t) = k0 − αTk0[T(t)− T0], where
k0 ≜ k(0) ≥ 1 denotes the changed multiplication factor following the reactivity
insertion at t = 0, αT denotes the magnitude of the negative temperature coefficient,
T(t) denotes the reactor’s temperature, and T0 denotes the reactor’s initial temperature
at time t = 0. For illustrating the application of the 1st-FASAM methodology, it
suffices to consider the special case of a “prompt critical transient”, when the reactor
becomes prompt critical after the reactivity insertion, i.e., when k0 = 1, so that the
reactivity–temperature feedback equation takes on the following particular form:

k(t) = 1 − αT [T(t)− T0]. (12)

Equations (8)–(12) can be transformed into the following system of nonlinear differen-
tial equations:

dφ(t)
dt

= − αT
lpcp

E(t)φ(t), t > 0. φ(0) = φ0, t = 0 (13)

dE(t)
dt

= γσf N f φ(t), E(0) = 0, (14)

dT(t)
dt

=
γσf N f

cp
φ(t); T(0) = T0. (15)

The Nordheim–Fuchs model described by Equations (13)–(15) can be solved analyti-
cally to obtain exact closed-form expressions for the state functions φ(t), E(t), and T(t),
as follows:

(i) Eliminating the function φ(t) from Equations (13) and (14) yields a nonlinear differen-
tial equation which can be integrated directly to obtain the following relation:

φ(t) = − αT
2lpcpγσf N f

E2(t) + φ0. (16)

(ii) Using Equation (16) in Equation (14) yields the following nonlinear equation for the
released energy E(t):

dE(t)
dt

= − αT
2lpcp

E2(t) + φ0γσf N f , E(0) = 0. (17)

The closed-form solution of Equation (17) has the following form:

E(t) = K1(α)tanh[tK2(α)], (18)

where:

K1(α) ≜
[2φ0γσf N f lpcp

αT

]1/2

; K2(α) ≜
[

αT φ0γσf N f

2lpcp

]1/2

. (19)

(iii) Replacing Equation (18) into Equation (16) yields the following closed-form expression
for φ(t):

φ(t) = φ0

{
1 − tanh2[tK2(α)]

}
=

φ0

cosh2[tK2(α)]
. (20)
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(iv) Replacing Equation (18) into Equation (11) yields the following closed-form expression
for T(t):

T(t) = T0 +
K1(α)

cp
tanh[tK2(α)]. (21)

The typical results of interest (called “model response”) for the Nordheim–Fuchs
model are as follows:

(i) The neutron flux φ(τ) in the reactor at a “final time” instance denoted as t = τ, after
the initiation at t = 0 of the prompt-critical power transient, which can be defined
mathematically as follows:

φ(τ) =
∫ τ

0
φ(t)δ(t − τ)dt, (22)

(ii) The total energy per cm3, E(τ), released at a user-chosen “final time” instance denoted
as t = τ, after the initiation at t = 0 of the prompt-critical power transient, which can
be defined mathematically as follows:

E(τ) =
∫ τ

0
E(t)δ(t − τ)dt, (23)

where δ(t − τ) denotes the Dirac-delta functional.

(iii) The reactor’s temperature T(τ) at a “final time” instance denoted as t = τ after
the initiation at t = 0 of the prompt-critical power transient, which can be defined
mathematically as follows:

T(τ) =
∫ τ

0
T(t)δ(t − τ)dt, (24)

Comparing the structure of the Nordheim–Fuchs model, cf. Equations (13)–(15),
to the generic structure of a NODE, cf. Equations (1) and (2), indicates the following
correspondences:

h(t) ≜ [h1(t), . . . , hTH(t)]
† ≜ [φ(t), E(t), T(t)]†; TH = 3; (25)

θ ≜ [θ1, . . . , θTW ]† ≜
(

αT , lp, cp, γ, σf , N f

)†
; x ≜ [x1, x2]

† ≜ (φ0, T0)
†; TW = 6, TI = 2. (26)

f1(h;θ; t) ≜ − αT
lpcp

E(t)φ(t) ≜ − θ1

θ2θ3
h1(t)h2(t) (27)

f2(h;θ; t) ≜ γσf N f φ(t) ≜ θ4θ5θ5h1(t); (28)

f3(h;θ; t) ≜
γσf N f

cp
φ(t) ≜

θ4θ5θ6

θ3
h1(t). (29)

The actual values of the components of the vectors θ and x are unknown even af-
ter having trained the NODE, since the actual values of the parameters underlying the
Nordheim–Fuchs model are experimentally measured and are thus subject to uncertainties.
However, the nominal values of these parameters are considered to be known and are
considered to be exactly reproducible by the “trained” NODE; these nominal values will be
denoted using a superscript “zero”, as follows:

θ0 ≜
[
θ0

1 , . . . , θ0
6

]†
≜

(
α0

T , l0
p, c0

p, γ0, σ0
f , N0

f

)†
; x0 ≜

[
x0

1, x0
2, x0

3

]†
≜

[
φ0

0, 0; T0
0

]†
. (30)

Consequently, the exact values of the functions h(t) ≜ [h1(t), h2(t), h3(t)]
† ≜

[φ(t), E(t), T(t)]† are unknown but their nominal values h0(t) ≜
[
h0

1(t), h0
2(t), h0

3(t)
]†

≜
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[
φ0(t), E0(t), T0(t)

]† are known after having solved Equations (13)–(15) at the nominal
values (θ0, x0).

The NODE representations, cf. Equation (4), of the responses considered in Equations (23)
and (24) have the following expressions, respectively:

r1(h) =
∫ t f

t0=0
h1(t) δ

(
t − t f

)
dt = φ

(
t f

)
; (31)

r2(h) =
∫ t f

t0=0
h2(t) δ

(
t − t f

)
dt = E

(
t f

)
; (32)

r3(h) =
∫ t f

t0=0
h3(t) δ

(
t − t f

)
dt = T

(
t f

)
. (33)

To illustrate the efficient computation of responses involving decoders having their
own parameters/weights, the thermal conductivity of the conceptual material of the
Nordheim–Fuchs reactor model will be considered to be a “decoder” response having the
following expression:

r4(h;φ) =
∫ t f

t0

hd
4[h(t);φ] δ

(
t − t f

)
dt;

hd
4[h(t);φ] ≜ k(T) = φ1 + φ2h3(t) + φ3h2

3(t) = φ1 + φ2T(t) + φ3T2(t) .
(34)

4. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural
Ordinary Differential Equations (1st-CASAM-NODE): Mathematical Framework

At the optimal/nominal parameter values, the optimal/nominal solution h0(t) will
satisfy the following forms of Equations (1) and (2):

dh0(t)
dt

= f
[
h0(t);θ0; t

]
, t > 0, (35)

h0(t0) = he

(
x0, w0

)
, at t = t0. (36)

Furthermore, the vector of optimal/nominal response will have components that are
obtained by using the nominal values for the respective functions and parameters, i.e.:

r0
n

(
h0;φ0

)
=

∫ t f

t0

hd
n

[
h0(t);φ0

]
δ
(

t − t f

)
dt; n = 1, . . . , TR. (37)

The known nominal values x0 of the initial conditions will differ from the true but un-
known values x of the initial conditions by variations denoted as δx ≜ x − x0. Furthermore,
the known nominal values w0 of the weights characterizing the encoder will differ from the
true but unknown values w of the respective weights by variations denoted as δw ≜ w−w0.
Similarly, the nominal values θ0 and φ0, respectively, will differ by variations δθ ≜ θ− θ0

and δφ ≜ φ−φ0, respectively, from the corresponding true but unknown values θ and
φ. Since the forward state functions h(t) are related to the weights and initial conditions
through Equations (1) and (2), it follows that the variations in these weights and initial
conditions will induce corresponding variations v(1)(t) ≜ [δh1(t), . . . , δhTH(t)]

† around
the nominal solution h0(t). In turn, the variations δφ and v(1)(t) will induce variations
δrn

(
h0;φ0; v(1); δφ

)
in the system’s response.

The 1st-CASAM-NODE methodology for computing the first-order sensitivities of the
response with respect to the model’s weights and initial conditions will be established by
following the same principles as those underlying the 1st-CASAM-N methodology [22],
which commence by noting that Cacuci [23] has shown that the most general definition of
the sensitivity of an operator-valued model response R(e) with respect to variations δe in
the model parameters and state functions in a neighborhood around the nominal functions
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and parameter values e0, is given by the 1st-order Gateaux- (G-) variation, which will be
denoted as δR

(
e0; δe

)
and is defined as follows:

δR
(

e0; δe
)
≜

{
d
dε

[
R
(

e0 + εδe
)]}

ε=0
≜ lim

ε→0

R
(
e0 + εδe

)
− R

(
e0)

ε
, (38)

for a scalar ε and for all (i.e., arbitrary) vectors δe in a neighborhood
(
e0 + εδe

)
around

e0. The G-variation δR
(
e0; δe

)
is an operator defined on the same domain as R(e) and

has the same range as R(e). The G-variation δR
(
e0; δe

)
satisfies the following relation:

R
(
e0 + εδe

)
− R

(
e0) = δR

(
e0; δe

)
+ ∆(δe), with lim

ε→0
[∆(εδe)]/ε = 0. When the G-variation

δR
(
e0; δe

)
is linear in the variation δe, it can be written in the form δR

(
e0; δe

)
= {∂R/∂e}e0 δe,

where {∂R/∂e}e0 denotes the first-order G-derivative of R(e) with respect to e evaluated
at e0.

Applying the definition provided in Equation (38) to Equation (4) yields the following
expression for the first-order G-variation δrn

(
h0;φ0; v(1); δφ

)
of the response rn(h;φ):

δrn

(
h0;φ0; v(1); δφ

)
=

{
d
dε

∫ t f

t0

hd
n

[
h0(t) + εv(1)(t);φ0 + εδφ

]
δ
(

t − t f

)
dt;

}
ε=0

=
{

δrn

(
h0;φ0; δφ

)}
dir

+
{

δrn

(
h0;φ0; v(1)

)}
ind

; n = 1, . . . , TR.
(39)

where v(1) ≜
[
v(1)1 (t), . . . , v(1)TH(t)

]†
and:

{
δrn

(
h0;φ0; δφ

)}
dir

≜
∫ t f

t0

δ
(

t − t f

){∂hd
n[h(t);φ]

∂φ

}
(h0;φ0)

δφ dt , (40)

{
δrn

(
h0;φ0; v(1)

)}
ind

≜
∫ t f

t0

δ
(

t − t f

){∂hd
n[h(t);φ]
∂h(t)

}
(h0;φ0)

v(1)(t) dt. (41)

Thus, the quantity
{

∂hd
n[h(t);φ]/∂φ

}
(h0;φ0)

in Equation (40) denotes the partial G-

derivatives of the response hd
n[h(t);φ] with respect to the decoder weightsφ ≜ [φ1, . . . , φTD]

†,
evaluated at the nominal values

(
h0;φ0

)
. The quantity

{
δrn

(
h0;φ0; δφ

)}
dir

is called the
“direct-effect term” because it arises directly from parameter variations δφ and can be com-
puted directly using the nominal values

(
h0;φ0

)
. The quantity

{
δrn

(
h0;φ0; δh; δφ

)}
ind

is called the “indirect-effect term” because it arises indirectly through the variations v(1)(t)
in the hidden state functions h(t). The indirect-effect term can be quantified only af-
ter having determined the variations v(1)(t), which are caused by the variations δx, δw,
and δθ.

The first-order relationships between the variations v(1)(t), δx, δw, and δθ are obtained
by computing the first-order G-variation of Equations (1) and (2), which are obtained, by
definition, as follows:{

d
dε

[
d
dt

(
h0 + εv(1)

)]}
ε=0

=

{
d
dε

f
[
h0 + εv(1);θ0 + εδθ; t

]}
ε=0

, (42)

{
d
dε

[
h0(t0) + εv(1)(t0)

]}
ε=0

=

{
d
dε

[
he

(
x0 + εδx, w0 + εδw

)]}
ε=0

. (43)



J. Nucl. Eng. 2024, 5 355

Carrying out the operations indicated in Equations (42) and (43) yields the following
system of equations:

dv(1)(t)
dt

−
{

∂f(h;θ)
∂h

}
(h0,θ0)

v(1)(t) =
{

∂f(h;θ)
∂θ

}
(h0,θ0)

δθ, (44)

v(1)(t0) =

{
∂he(x, w)

∂x

}
(x0,w0)

δx +
{

∂he(x, w)

∂w

}
(x0,w0)

δw. (45)

where:

∂f(h;θ)
∂h

≜

 ∂ f1/∂h1 · ∂ f1/∂hTH
· · ·

∂ fTH/∂h1 · ∂ fTH/∂hTH


TH×TH

, (46)

∂f(h;θ)
∂θ

≜

 ∂ f1/∂θ1 · ∂ f1/∂θTW
· · ·

∂ fTH/∂θ1 · ∂ fTH/∂θTW


TH×TW

, (47)

∂he(x, w)

∂x
≜

 ∂he
1/∂x1 · ∂he

1/∂xTI
· · ·

∂he
TH/∂x1 · ∂he

TH/∂xTI


TH×TI

, (48)

∂he(x, w)

∂w
≜

 ∂he
1/∂w1 · ∂he

1/∂wTEW
· · ·

∂he
TH/∂w1 · ∂he

TH/∂wTEW


TH×TEW

. (49)

The system comprising Equations (44) and (45) is called the “1st-Level Variational
Sensitivity System” (1st-LVSS), and its solution, v(1)(t), is called the “1st-level variational
sensitivity function”. Note that the 1st-LVSS would need to be solved anew for each
component of the variations δx, δw, and δθ, which would be prohibitively expensive
computationally.

The need for solving the 1st-LVSS can be avoided if the indirect-effect term defined
in Equation (41) could be expressed in terms of a “right-hand side” that does not involve
the function v(1)(t). This goal can be achieved by expressing the right side of Equation (41)
in terms of the solutions of the “1st-Level Adjoint Sensitivity System” (1st-LASS), the
construction of which requires the introduction of adjoint operators. Adjoint operators can
be defined in Banach spaces but are most useful in Hilbert spaces. For the NODE considered
in this work, the appropriate Hilbert space is defined on the domain Ωt ≜

[
t0, t f

]
and

will be denoted as H1(Ωt), so that v(1)(t) ∈ H1(Ωt). In H1(Ωt), the inner product of
two vectors in u(a)(t) ∈ H1(Ωt) and u(b)(t) ∈ H1(Ωt) will be denoted as

〈
u(a), u(b)

〉
1
, and

is defined as follows:〈
u(a), u(b)

〉
1
≜

{∫ t f

t0

u(a)(t)·u(b)(t)dt
}
(x0;θ0;w0;φ0)

, (50)

where the “dot” indicates the “scalar product of two vectors” defined as follows: u(a)(t)·u(b)(t)

≜
[
u(a)(t)

]†
u(b)(t) ≜

TH
∑

i=1
u(a)

i (t)u(b)
i (t) =

[
u(b)(t)

]†
u(a)(t).

The next step is to form the inner product of Equation (44) with a vector a(1)(t) ≜[
a(1)1 (t), . . . , a(1)TD(t)

]
∈ H1(Ωt), where the superscript “(1)” indicates “1st-level”, to obtain

the following relationship:〈
a(1)(t),

dv(1)(t)
dt

−
[

∂f(h;θ)
∂h

]
(h0,θ0)

v(1)(t)

〉
1

=

〈
a(1)(t),

[
∂f(h;θ)

∂θ

]
(h0,θ0)

δθ

〉
1

. (51)
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Using the definition of the adjoint operator in H1(Ωt), the left side of Equation (51) is
transformed as follows, after integrating by parts over the independent variable t:

∫ t f

t0

a(1)(t)· dv(1)(t)
dt

dt −
∫ t f

t0

a(1)(t)·
[

∂f(h;θ)
∂h

]
(h0,θ0)

v(1)(t)dt = a(1)
(

t f

)
· v(1)

(
t f

)
−a(1)(t0)· v(1)(t0) +

∫ t f

t0

v(1)(t)·
{
−da(1)(t)

dt
−

[
∂f(h;θ)

∂h

]†

(h0,θ0)
a(1)(t)

}
dt .

(52)

The last term on the right side of Equation (52) is now required to represent the
“indirect-effect” term defined in Equation (41), which is achieved by requiring that the
1st-level adjoint function a(1)(t) satisfy the following relation:

−da(1)(t)
dt

−
[

∂f(h;θ)
∂h

]†

(h0,θ0)
a(1)(t) =

{
∂hd

n[h(t);φ]
∂h(t)

}
(h0;φ0)

δ
(

t − t f

)
. (53)

The definition of the 1st-level adjoint sensitivity function a(1)(t) is now completed
by requiring it to satisfy (adjoint) “boundary conditions at the final time” t = t f so as to

eliminate the term containing the unknown values v(1)
(

t f

)
in Equation (52). This aim is

achieved by requiring that
a(1)

(
t f

)
= 0. (54)

The system of equations comprising Equations (53) and (54) constitute the “1st-Level
Adjoint Sensitivity System” (1st-LASS) for the 1st-level adjoint function a(1)(t). Evidently,
the 1st-LASS is independent of parameter variations and needs to be solved just once to
obtain the 1st-level adjoint function a(1)(t). Notably, the 1st-LASS has the same form as
the “adjoint equations” used for training the NODE, cf. Equations (6) and (7), but with the
“response” ∂hd

n[h(t);φ]/∂h(t)δ
(

t − t f

)
being the “source” for the 1st-LASS, whereas the

“source” in the “training” of the NODE was the “loss functional” L[h(t);θ; t]/∂hδ
(

t − t f

)
.

Evidently, the 1st-level adjoint sensitivity function a(1)(t) is the counterpart of the “adjoint
function” a(t) in the “training” of the NODE.

Using the results represented by Equations (53), (54), (51) and (41) in Equation (52)
yields the following alternative expression for the “indirect-effect” term, which does not
involve the 1st-level variational sensitivity function v(1)(t) but involves the 1st-level adjoint
function a(1)(t):

{
δrn

(
h0;φ0; v(1)

)}
ind

=

〈
a(1)(x),

[
∂f(h;θ)

∂θ

]
(h0,θ0)

δθ

〉
1

+ a(1)(t0)· v(1)(t0). (55)

Using in Equation (55) the expression provided for v(1)(t0) in Equation (45) yields the
following expression for the “indirect-effect” term:

{
δrn

(
h0;φ0; v(1)

)}
ind

=

〈
a(1)(x),

[
∂f(h;θ)

∂θ

]
(h0,θ0)

δθ

〉
1

+a(1)(t0)·
{

∂he(x, w)

∂x

}
(x0,w0)

δx + a(1)(t0)·
{

∂he(x, w)

∂w

}
(x0,w0)

δw

. (56)

Replacing the expression obtained in Equation (55) for the “indirect-effect term”
together with the expression of the direct-effect term provided by Equation (40) into
Equation (39) yields the following expression for the first-order G-variation
δrn

(
h0;φ0; v(1); δφ

)
of the response rn(h;φ):
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δrn

(
h0;φ0; v(1); δφ

)
=

∂hd
n

[
h
(

t f

)
;φ

]
∂φ


(h0;φ0)

δφ+ a(1)(t0)·
{

∂he(x, w)

∂w

}
(x0,w0)

δw

+ a(1)(t0)·
{

∂he(x, w)

∂x

}
(x0,w0)

δx +
∫ t f

t0

a(1)(t)·
{[

∂f(h;θ)
∂θ

]
(h0,θ0)

δθ

}
dt ; n = 1, . . . , TR.

(57)

As indicated by the right side of Equation (57), the (partial) sensitivities of the response
rn(h;φ) are provided by the following expressions, all of which are to be evaluated at the
nominal values of all functions and parameters/weights:

∂rn

∂φi
=

∂hd
n

[
h
(

t f

)
;φ

]
∂φi

; i = 1, . . . , TD; n = 1, . . . , TR; (58)

∂rn

∂wi
= a(1)(t0)·

∂he(x, w)

∂wi
; i = 1, . . . , TEW; n = 1, . . . , TR; (59)

∂rn

∂xi
= a(1)(t0)·

∂he(x, w)

∂xi
; i = 1, . . . , TI; n = 1, . . . , TR; (60)

∂rn

∂θi
=

∫ t f

t0

a(1)(t)· ∂f(h;θ)
∂θi

dt ; i = 1, . . . , TW; n = 1, . . . , TR. (61)

5. Illustrative Application of the 1st-CASAM-NODE Methodology to Compute
First-Order Sensitivities of Nordheim–Fuchs Model Responses with Respect to the
Underlying Parameters

The application of the 1st-CASAM-NODE methodology to compute the first-order sen-
sitivities of the responses r1(h), r2(h), r3(h), and r4(h) with respect to the
Nordheim–Fuchs model’s parameters and initial conditions will be presented below in
Sections 5.1–5.4, respectively. Using the “energy-released” response r2(h) = E

(
t f

)
as a

paradigm, Section 5.5 will illustrate an alternative path for computing first-order sensi-
tivities by applying the “First-Order Feature Adjoint Sensitivity Analysis Methodology
for Nonlinear Systems” (1st-FASAM-N) [24], which is the most efficient procedure for
computing sensitivities, but which may require the construction of a dedicated neural net
for this purpose.

5.1. First-Order Sensitivities of the Flux Response r1(h) = φ
(

t f

)
The first-order sensitivity of the response r1(h) = φ

(
t f

)
is provided by the first-order

G-differential of the expression in Equation (31), which is, by definition, obtained as follows:

δr1(h; δh) =
{

d
dε

[∫ t f

0

[
φ0(t) + εδφ(t)

]
δ
(

t − t f

)
dt
]}

ε=0
=

∫ t f

0
δφ(t)δ

(
t − t f

)
dt. (62)

The variation δφ(t) is the solution of the “First-Level Variational Sensitivity System”
(1st-LVSS) which is obtained by G-differentiating Equations (13)–(15), which yield the
following expressions:{

d
dε

[
d
dt

(
φ0 + εδφ

)]}
ε=0

= −
{

d
dε

[
α0

T + εδαT(
l0
p + εδlp

)(
c0

p + εδcp
)(E0 + εδE

)(
φ0 + εδφ

)]}
ε=0

, (63)

{
d
dε

[
d
dt

(
E0 + εδE

)]}
ε=0

=

{
d
dε

[(
γ0 + εδγ

)(
σ0

f + εδσf

)(
N0

f + εδN f

)(
φ0 + εδφ

)]}
ε=0

, (64)
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{
d
dε

[
d
dt

(
T0 + εδT

)]}
ε=0

=

 d
dε

(
γ0 + εδγ

)(
σ0

f + εδσf

)(
N0

f + εδN f

)
(
c0

p + εδcp
) (

φ0 + εδφ
)

ε=0

, (65)

{
d
dε

[
φ0(t) + εδφ(t)

]
t=0

}
ε=0

=

{
d
dε

(
φ0

0 + εδφ0

)}
ε=0

, (66){
d
dε

[
E0(t) + εδE(t)

]
t=0

}
ε=0

= 0, (67){
d
dε

[
T0(t) + εδT(t)

]
t=0

}
ε=0

=

{
d
dε

(
T0

0 + εδT0

)}
ε=0

. (68)

Performing the operations involving the scalar ε in Equations (63)–(68) yields the
following expression for the 1st-LVSS:

d
dt

δφ(t) +
α0

T
l0
pc0

p
E0(t)δφ(t) +

α0
T

l0
pc0

p
φ0(t)δE(t)

=

[
− δαT

l0
pc0

p
+

α0
T(

l0
p
)2c0

p
δlp +

α0
T

l0
p
(
c0

p
)2 δcp

]
E0(t)φ0(t) ,

(69)

d
dt

δE(t)− γ0σ0
f N0

f δφ(t) =
[(

σ0
f N0

f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f

]
φ0(t), (70)

d
dt

δT(t)−
γ0σ0

f N0
f

c0
p

δφ(t)

=

[(
σ0

f N0
f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f −

γ0σ0
f N0

f

c0
p

δcp

]
φ0(t)

c0
p

,

(71)

[δφ(t)]t=0 = δφ0, (72)

[δE(t)]t=0 = 0, (73)

[δT(t)]t=0 = δT0. (74)

The 1st-LVSS comprising Equations (69)–(74) represents the specific form taken on by
the general NODE representation of the 1st-LVSS provided by Equations (44) and (45) for
the Nordheim–Fuchs model. Comparing Equations (69)–(74) to Equations (44) and (45)
indicates the following correspondences:

∂f(h;θ)
∂h

≜


− α0

T E0(t)
l0
pc0

p
− α0

T φ0(t)
l0
pc0

p
0

γ0σ0
f N0

f 0 0

γ0σ0
f N0

f

c0
p

0 0

; v(1)(t) ≜

δφ(t)
δE(t)
δT(t)

; (75)

∂f(h;θ)
∂θ

≜


∂ f1
∂θ1

∂ f1
∂θ2

∂ f1
∂θ3

0 0 0

0 0 0 ∂ f2
∂θ4

∂ f2
∂θ5

∂ f2
∂θ6

0 0 ∂ f3
∂θ3

∂ f3
∂θ4

∂ f3
∂θ5

∂ f3
∂θ6

; δθ ≜



δα

δlp

δcp

δγ

δσf

δN f


; (76)
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∂ f1

∂θ1
≜ −E0(t)φ0(t)

l0
pc0

p
;

∂ f1

∂θ2
≜

α0
TE0(t)φ0(t)(

l0
p
)2c0

p
;

∂ f1

∂θ3
≜

α0
TE0(t)φ0(t)

l0
p
(
c0

p
)2 ;

∂ f2

∂θ4
≜ σ0

f N0
f φ0(t);

∂ f2

∂θ5
≜ γ0N0

f φ0(t);
∂ f2

∂θ6
≜ γ0σ0

f φ0(t);

∂ f3

∂θ3
≜ −

γ0σ0
f N0

f φ0(t)(
c0

p
)2 ;

∂ f3

∂θ4
≜

σ0
f N0

f φ0(t)

c0
p

;
∂ f3

∂θ5
≜

γ0N0
f φ0(t)

c0
p

;
∂ f3

∂θ6
≜

γ0σ0
f φ0(t)

c0
p

.

(77)

∂he(x, w)

∂x
≜

1 0 0
0 1 0
0 0 1

 ; δx ≜

δφ0
0

δT0

;
∂he(x, w)

∂w
≜

0 0 0
0 0 0
0 0 0

. (78)

It is evident that the 1st-LVSS would need to be solved repeatedly in order to compute
the 1st-level variational function v(1)(t) ≜ [δφ(t), δE(t), δT(t)]† for every possible varia-
tions δθ in the model parameters and variations δx in the initial conditions (“encoder”).
This computationally expensive path can be avoided by applying the concepts of the
1st-CASAM-NODE previously outlined in Section 4, as follows:

1. Consider that the 1st-level variational function v(1) ≜ [δφ(t), δE(t), δT(t)]† ∈ H1(Ωt)

is an element in a Hilbert space denoted as H1(Ωt), Ωt ≜
(

0, t f

)
, comprising elements

of the form u(a)(t) ≜
[
u(a)

1 (t), u(a)
2 (t), u(a)

3 (t)
]†

, u(b)(t) ≜
[
u(b)

1 (t), u(b)
2 (t), u(b)

3 (t)
]†

,

and being endowed with the inner product
〈

u(a), u(b)
〉

1
introduced in Equation (50),

which takes on the following particular form for the Nordheim–Fuchs model:

〈
u(a), u(b)

〉
1
≜

∫ t f

0
u(a)(t)·u(b)(t)dt =

3

∑
i=1

∫ t f

0
u(a)

i (t)u(b)
i (t)dt. (79)

2. Use Equation (79) to form the inner product of Equations (69)–(71) with a yet un-

defined function a(1)(t) ≜
[

a(1)1 (t), a(1)2 (t), a(1)3 (t)
]†

∈ H1(Ωt), to obtain the fol-
lowing relation, which is the particular form taken on by Equation (51) for the
Nordheim–Fuchs model:

∫ t f

0
a(1)1 (t)

[
d
dt

δφ(t) +
α0

T
l0
pc0

p
E0(t)δφ(t) +

α0
T

l0
pc0

p
φ0(t)δE(t)

]
dt

+
∫ t f

0
a(1)2 (t)

[
d
dt

δE(t)− γ0σ0
f N0

f δφ(t)
]

dt

+
∫ t f

0
a(1)3 (t)

[
d
dt

δT(t)−
γ0σ0

f N0
f

c0
p

δφ(t)

]
dt

=
∫ t f

0
a(1)1 (t)

[
− δαT

l0
pc0

p
+

α0
T(

l0
p
)2c0

p
δlp +

α0
T

l0
p
(
c0

p
)2 δcp

]
E0(t)φ0(t) dt

+
∫ t f

0
a(1)2 (t)

[(
σ0

f N0
f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f

]
φ0(t)dt

+
∫ t f

0
a(1)3 (t)

[(
σ0

f N0
f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f −

γ0σ0
f N0

f

c0
p

δcp

]
φ0(t)

c0
p

dt.

(80)

3. Integrating by parts the terms on the left side of Equation (80) yields the following
relation:
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∫ t f

0
a(1)1 (t)

[
d
dt

δφ(t) +
α0

T
l0
pc0

p
E0(t)δφ(t) +

α0
T

l0
pc0

p
φ0(t)δE(t)

]
dt

+
∫ t f

0
a(1)2 (t)

[
d
dt

δE(t)− γ0σ0
f N0

f δφ(t)
]

dt

+
∫ t f

0
a(1)3 (t)

[
d
dt

δT(t)−
γ0σ0

f N0
f

c0
p

δφ(t)

]
dt = a(1)1

(
t f

)
δφ

(
t f

)
− a(1)1 (0)δφ(0)

+a(1)2

(
t f

)
δE

(
t f

)
− a(1)2 (0)δE(0) + a(1)3

(
t f

)
δT

(
t f

)
− a(1)3 (0)δT(0)

+
∫ t f

0
v(1)(t)·

{
A(1)(h;θ)a(1)(t)

}
(h0;θ0)

dt ,

(81)

where:

A(1)(h;θ)a(1)(t) ≜ −da(1)(t)
dt

−
[

∂f(h;θ)
∂h

]†

(h0,θ0)
a(1)(t); (82)

with [
∂f(h;θ)

∂h

]†

(h0,θ0)
≜


−α0

TE0(t)/
(

l0
pc0

p

)
γ0σ0

f N0
f γ0σ0

f N0
f /c0

p

−α0
T φ0(t)/

(
l0
pc0

p

)
0 0

0 0 0

 . (83)

The relation obtained in Equation (81) is the particular form taken on by Equation (52)
for the Nordheim–Fuchs model.

4. The definition of the function a(1)(t) is now completed by requiring that: (i) the in-
tegral term on the right side of Equation (81) represent the G-differential δr1(h; δh)
defined in Equation (62) and (ii) the appearance of the unknown values of the compo-
nents of v(1)

(
t f

)
be eliminated from appearing in Equation (81). These requirements

will be satisfied if the function a(1)(t) ≜
[

a(1)1 (t), a(1)2 (t), a(1)3 (t)
]†

∈ H1(Ωt) is the
solution of the following “1st-Level Adjoint Sensitivity System” (1st-LASS):

A(1)(h;θ)a(1)(t) ≜ −da(1)(t)
dt

−
[

∂f(h;θ)
∂h

]†

(h0,θ0)
a(1)(t) =

[
δ
(

t − t f

)
, 0, 0

]†
; (84)

a(1)
(

t f

)
≜

[
a(1)1

(
t f

)
, a(1)2

(
t f

)
, a(1)3

(
t f

)]†
= [0, 0, 0]†. (85)

It is important to note that if the vector-valued function f(h;θ) is linear in h(t) (in
which case the NODE would be linear), then the 1st-level adjoint sensitivity function a(1)(t)
would not depend on h(t), so the “forward solution path” would not need to be stored
in order to compute a(1)(t). Otherwise, however, the “forward solution path” h(t) would
need to be stored in order to compute a(1)(t).

5. Using Equations (84), (85), (80), (62), (72), (73) and (74) in Equation (81) yields the
following expression for the first G-differential δr1(h; δh) of the response under con-
sideration:

δr1(h; δh) = δφ
(

t f

)
=

∫ t f

0
a(1)1 (t)

[
− δαT

l0
pc0

p
+

α0
T(

l0
p
)2c0

p
δlp +

α0
T

l0
p
(
c0

p
)2 δcp

]
E0(t)φ0(t) dt

+
∫ t f

0
a(1)2 (t)

[(
σ0

f N0
f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f

]
φ0(t)dt

+
∫ t f

0
a(1)3 (t)

[(
σ0

f N0
f

)
δγ +

(
γ0N0

f

)
δσf +

(
γ0σ0

f

)
δN f −

γ0σ0
f N0

f

c0
p

δcp

]
φ0(t)

c0
p

dt

+a(1)1 (0)δφ0 + a(1)3 (0)δT0 .

(86)
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It follows from Equation (86) that the first-order sensitivities of the response φ
(

t f

)
with respect to the parameters and initial conditions underlying the Nordheim–Fuchs
model have the following expressions, all of which are to be evaluated at the nominal
values of the respective parameters and functions (but the superscript “zero” is omitted to
simplify the notation):

∂φ
(

t f

)
∂αT

= − 1
lpcp

∫ t f

0
a(1)1 (t)E(t)φ(t) dt; (87)

∂φ
(

t f

)
∂lp

=
αT(

lp
)2cp

∫ t f

0
a(1)1 (t)E(t)φ(t) dt; (88)

∂φ
(

t f

)
∂cp

=
αT

lp
(
cp
)2

∫ t f

0
a(1)1 (t)E(t)φ(t) dt −

γσf N f(
cp
)2

∫ t f

0
a(1)3 (t) φ(t)dt; (89)

∂φ
(

t f

)
∂γ

= σf N f

∫ t f

0

[
a(1)2 (t) +

1
cp

a(1)3 (t)
]

φ(t)dt; (90)

∂φ
(

t f

)
∂σf

= γN f

∫ t f

0

[
a(1)2 (t) +

1
cp

a(1)3 (t)
]

φ(t)dt; (91)

∂φ
(

t f

)
∂N f

= γσf

∫ t f

0

[
a(1)2 (t) +

1
cp

a(1)3 (t)
]

φ(t)dt; (92)

∂φ
(

t f

)
∂φ0

= a(1)1 (0);
∂φ

(
t f

)
∂E(0)

= 0;
∂φ

(
t f

)
∂T0

= a(1)3 (0). (93)

5.2. First-Order Sensitivities of the Energy Released Response r2(h) = E
(

t f

)
The first-order G-differential of the response r2(h) = E

(
t f

)
defined in Equation (32)

is obtained as follows:

δr2(h; δh) =
{

d
dε

[∫ t f

0

[
E0(t) + εδE(t)

]
δ
(

t − t f

)
dt
]}

ε=0
=

∫ t f

0
δE(t)δ

(
t − t f

)
dt, (94)

where the variation δE(t) is the solution of the First-Level Variational Sensitivity System
(1st-LVSS) defined by Equations (69)–(74).

The sensitivities of the response r2(h) = E
(

t f

)
are determined by following the

same procedure as has been outlined in Section 5.2, using an adjoint function denoted as

χ(1)(t) ≜
[
χ
(1)
1 (t),χ(1)2 (t),χ(1)3 (t)

]†
∈ H1(Ωt). Following the same steps as in Section 5.2

(which are omitted here to avoid undue repetition) leads to the following 1st-LASS for the
1st-level adjoint sensitivity function χ(1)(t):

A(1)(h;θ)χ(1)(t) ≜ −dχ(1)(t)
dt

−
[

∂f(h;θ)
∂h

]†

(h0,θ0)
χ(1)(t) =

[
0, δ

(
t − t f

)
, 0
]†

; (95)

χ(1)
(

t f

)
≜

[
χ
(1)
1

(
t f

)
,χ(1)2

(
t f

)
,χ(1)3

(
t f

)]†
= [0, 0, 0]†. (96)

The sensitivities of E
(

t f

)
with respect to the model parameters and initial conditions

have the same formal expressions as shown in Equations (87)–(93), but with the com-
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ponents of the 1st-level adjoint sensitivity function χ(1)(t) replacing the components of

a(1)(t) ≜
[

a(1)1 (t), a(1)2 (t), a(1)3 (t)
]†

.

5.3. First-Order Sensitivities of the Temperature Response r3(h) = T
(

t f

)
The first-order G-differential of the response r3(h) = T

(
t f

)
defined in Equation (33)

is obtained as follows:

δr3(h; δh) =
{

d
dε

[∫ t f

0

[
T0(t) + εδT(t)

]
δ
(

t − t f

)
dt
]}

ε=0
=

∫ t f

0
δT(t)δ

(
t − t f

)
dt, (97)

where the variation δT(t) is the solution of the First-Level Variational Sensitivity System
(1st-LVSS) defined by Equations (69)–(74).

The sensitivities of the response r3(h) = T
(

t f

)
are determined by following the

same procedure as has been outlined in Section 5.1, using an adjoint function denoted as

ξ(1)(t) ≜
[
ξ
(1)
1 (t), ξ(1)2 (t), ξ(1)3 (t)

]†
∈ H1(Ωt). Following the same steps as in Section 5.1

(which are omitted here to avoid undue repetition) leads to the following 1st-LASS for the
1st-level adjoint sensitivity function ξ(1)(t):

A(1)(h;θ)ξ(1)(t) ≜ −dξ(1)(t)
dt

−
[

∂f(h;θ)
∂h

]†

(h0,θ0)
ξ(1)(t) =

[
0, 0, δ

(
t − t f

)]†
; (98)

ξ(1)
(

t f

)
≜

[
ξ
(1)
1

(
t f

)
, ξ(1)2

(
t f

)
, ξ(1)3

(
t f

)]†
= [0, 0, 0]†. (99)

The sensitivities of T
(

t f

)
with respect to the model parameters and initial conditions

have the same formal expressions as shown in Equations (87)–(93), but with the components

of the 1st-level adjoint sensitivity function ξ(1)(t) ≜
[
ξ
(1)
1 (t), ξ(1)2 (t), ξ(1)3 (t)

]†
replacing the

components of a(1)(t) ≜
[

a(1)1 (t), a(1)2 (t), a(1)3 (t)
]†

.

5.4. First-Order Sensitivities of the Thermal Conductivity Response r4(h;φφφ) = k(Tf ;φφφ)

The first-order G-differential of the response r4(h;φ) = k(Tf ;φ) defined in
Equation (34) is obtained as follows:

δr4(h;φ; δh; δφ) = δk(T;φ; δT; δφ) =

{
d
dε

∫ t f

0

[
φ0

1 + εδφ1

]
δ
(

t − t f

)
dt
}

ε=0

+

{
d
dε

∫ t f

0

[(
φ0

2 + εδφ2

)(
T0 + εδT

)
+

(
φ0

3 + εδφ3

)(
T0 + εδT

)2
]

δ
(

t − t f

)
dt
}

ε=0

= {δk(T;φ; δφ)}dir + {δk(T;φ; δT)}ind,

(100)

where the direct-effect and the indirect-effect terms, respectively, are defined as follows:

{δk(T;φ; δφ)}dir ≜ δφ1 + δφ2

∫ t f

0
T0(t) δ

(
t − t f

)
+ δφ3

∫ t f

0

[
T0(t)

]2
δ
(

t − t f

)
; (101)

{δk(T;φ; δT)}ind ≜
∫ t f

0

[
φ0

2 + 2φ0
3T0(t)

]
δT(t) δ

(
t − t f

)
dt. (102)

The direct-effect term yields the following sensitivities which can be evaluated
immediately:

∂k(Tf )

∂φ1
= 1;

∂k(Tf )

∂φ2
= T0

(
t f

)
;

∂k(Tf )

∂φ3
=

[
T0

(
t f

)]2
. (103)
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The indirect-effect term can be evaluated only after determining the variational func-
tion δT(t), which is the solution of the 1st-LVSS defined by Equations (69)–(74). The need
for solving (repeatedly) the 1st-LVSS can be circumvented by applying the principles of
the 1st-CASAM-NODE, as previously outlined. Thus, following the same procedure as
detailed in Section 5.1 leads to the following 1st-LASS for the 1st-level adjoint sensitivity

function, denoted as ψ(1)(t) ≜
[
ψ
(1)
1 (t),ψ(1)

2 (t),ψ(1)
3 (t)

]†
∈ H1(Ωt), for computing the

sensitivities stemming from the indirect-effect term {δk(T;φ; δT)}ind:

A(1)(h;θ)ψ(1)(t) =
[[

φ0
2 + 2φ0

3T0(t)
]
δ
(

t − t f

)
, 0, 0

]†
; (104)

ψ(1)
(

t f

)
≜

[
ψ
(1)
1

(
t f

)
,ψ(1)

2

(
t f

)
,ψ(1)

3

(
t f

)]†
= [0, 0, 0]†. (105)

It is important to note that all of the following 1st-Level Adjoint Sensitivity Systems,
enumerated in items (i) through (iv), below:

(i) the 1st-LASS defined by Equations (84) and (85), which are solved for obtaining
the corresponding 1st-level adjoint sensitivity function needed for computing the
sensitivities of the component h1(t) ≜ φ(t) of the state function h(t);

(ii) the 1st-LASS defined by Equations (95) and (96), which are solved for obtaining
the corresponding 1st-level adjoint sensitivity function needed for computing the
sensitivities of the component h2(t) ≜ E(t) of the state function h(t);

(iii) the 1st-LASS defined by Equations (98) and (99), which are solved for obtaining
the corresponding 1st-level adjoint sensitivity function needed for computing the
sensitivities of the component h3(t) ≜ T(t) of the state function h(t); and

(iv) the 1st-LASS defined by Equations (104) and (105), which are solved for obtaining
the corresponding 1st-level adjoint sensitivity function needed for computing the
sensitivities stemming from the indirect-effect term {δk(T;φ; δT)}ind,

have the same structures/operators on their left sides, and the respective adjoint sensitivity
functions all satisfy the same final-time conditions; only the source terms on the right
sides of the respective 1st-LASS differ from each other. Consequently, the same numerical
procedures and/or neural nets can be used for computing the respective 1st-level adjoint
sensitivity functions.

Since the NODE is a first-order ODE, the corresponding 1st-LASS is solved “back-
wards” in time, starting at the final time-step t = t f , as indicated by the general 1st-
CASAM-NODE methodology presented in Section 4. If the NODE is linear in the state
function (dependent variable) h(t), then the 1st-LASS will be independent of h(t), so the
“forward solution path” would not need to be stored in order to compute the 1st-level
adjoint sensitivity functions. In contradistinction, if the NODE is nonlinear in the state
function (dependent variable) h(t), then the 1st-LASS will depend on h(t), so the “forward
solution path” would need to be stored in order to compute the respective 1st-level adjoint
sensitivity functions.

Furthermore, the same formal expressions are obtained for the sensitivities of the
responses considered. Thus, the respective 1st-level adjoint sensitivity functions differ from
each other according to the response considered, but the quadrature schemes needed to
evaluate the integrals defining the respective sensitivities are the same. Therefore, the same
numerical procedures and/or neural nets can be used for computing the respective integrals
that define the 1st-order sensitivities, while using the appropriate/corresponding 1st-level
adjoint sensitivity functions. If the decoder response depends on parameters/weights,
additional sensitivities arise from the respective nonvanishing “direct-effect term”.

If simple relations can be obtained among the responses of interest, such as
Equations (11) and (16) for the illustrative paradigm example, then the sensitivities of
the various responses can be obtained by using these relationships, but this is seldom the
case in practice.
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5.5. Most Efficient Computation of First-Order Sensitivities: Application of the 1st-FASAM-N

In most, if not all, practical situations, the equations modeling the physical system
under consideration can be recast to suit the computation of the response under consid-
eration and, consequently, the computation of the response sensitivities with respect to
the underlying model parameters. For example, the response r2(h) = E

(
t f

)
involves

just the function E(t); hence, this response would be ideally computed, together with its
sensitivities to parameters, by using an equation containing as few as possible dependent
variables other than the ones (e.g., E(t)) needed for computing the response. Such an
equation was obtained in Equation (17), which contains just the dependent variable E(t), so
it would be more advantageous to use it for the sensitivity analysis of r2(h) = E

(
t f

)
rather

than use the entire system of equations underlying the Nordheim–Fuchs model, as was
performed, for illustrative purposes, in Section 5.1. Furthermore, the form of Equation (17)
indicates that the “features” (i.e., functions) of model parameters characterizing this balance
equation can be chosen as follows:

F1(p) ≜
αT

2lpcp
; F2(p) ≜ φ0γσf N f ; F(p) ≜ [F1(p), F2(p)]

†, (106)

where the vector of primary model parameters is defined as follows:

p ≜ [p1, . . . , p7]
† ≜

[
αT , lp, cp, γ, σf , N f , φ0

]†
. (107)

Note that the vector p includes the initial condition φ0.
In terms of the “feature function” F(p) ≜ [F1(p), F2(p)]

†, Equation (17) can alterna-
tively be written as follows:

dE(t)
dt

= −F1(p)E2(t) + F2(p), E(0) = 0. (108)

In terms of the feature function F(p) ≜ [F1(p), F2(p)]
†, the solution of Equation (108)

has the following form:

E(t) =
[

F2(p)
F1(p)

]1/2
tanh[tG(p)]; G(p) ≜

√
F1(p)F2(p). (109)

Of course, a specific NODE would need to be constructed to model Equation (108).
The form of Equation (108) is suitable for applying the “nth-Order Features Adjoint

Sensitivity Analysis Methodology for Nonlinear Systems” (nth-FASAM-N) [24], which is
the most efficient methodology for computing sensitivities, particularly for sensitivities of
second and higher orders. This methodology considers the specific “features” of model
parameters, such as the function F(p) ≜ [F1(p), F2(p)]

†, to compute sensitivities with
respect to model parameters more efficiently than by considering directly the respective
primary parameters.

For the computation of 1st-order sensitivities, the 1st-FASAM-N commences by con-
structing the 1st-Level Variational Sensitivity System (1st-LVSS) for the variational func-
tion δE(t) by applying the definition of the first-order G-differential to Equation (108),
which yields:

d
dε

{
d
[
E0(t) + εδE(t)

]
dt

+
[

F0
1 + εδF1

][
E0 + εδE

]2
−

[
F0

2 + ε(δF2)
]}

ε=0

= 0, (110)

d
dε

{ [
E0(t) + εδE(t)

]
t=0

}
ε=0

= 0. (111)



J. Nucl. Eng. 2024, 5 365

Performing the operations indicated in Equations (110) and (111) yields the following
expression for the 1st-LVSS satisfied by the variational function δE(t):[

d
dt

+ 2F1E(t)
]

δE(t) = −δF1E2(t) + δF2, t > 0, (112)

δE(0) = 0, t = 0. (113)

The 1st-LVSS represented by Equation (112) is to be solved at the nominal values
for the parameters and the state function E(t) but the superscript “0” (which indicates
“nominal values”) has been omitted to simplify the notation.

Numerically, the 1st-LVSS would need to be solved anew for the various variations
δF1, δF2 in the components of the feature function F(p). This need for repeatedly solv-
ing the 1st-LVSS can be avoided by constructing the corresponding 1st-Level Adjoint
Sensitivity System (1st-LASS). The Hilbert space appropriate for the construction of the
1st-LASS corresponding to Equation (112) is endowed with the following particular form
of Equation (79): 〈

u(a)(t), u(b)(t)
〉

1
≜

∫ t f

0
u(a)(t)u(b)(t)dt. (114)

Using Equation (114) to form the inner product of Equation (112) with a yet undefined
function ω(1)(t) yields the following relation:∫ t f

0
ω(1)(t)

[
d
dt

+ 2F1E(t)
]

δE(t) dt = −(δF1)
∫ t f

0
ω(1)(t)E2(t) dt + (δF2)

∫ t f

0
ω(1)(t) dt. (115)

Integrating by parts the left side of Equation (115) yields the following relation:∫ t f

0
ω(1)(t)

[
d
dt

+ 2F1E(t)
]

δE(t) dt = ω(1)(τ)δE(τ) − ω(1)(0)δE(0)

+
∫ t f

0
δE(t)

[
−dω(1)(t)

dt
+ 2F1E(t)ω(1)(t)

]
dt.

(116)

Identifying the integral on the right side of Equation (116) with the G-differential
δE(τ) of the response E(τ) obtained in Equation (32) and eliminating the unknown value
δE(τ) from the right side of Equation (116) by setting ω(1)(τ) = 0 yields the following
1st-Level Adjoint Sensitivity System (1st-LASS) for the 1st-level adjoint sensitivity function
ω(1)(t): [

− d
dt

+ 2F1E(t)
]

ω(1)(t) = δ
(

t − t f

)
, t > 0, (117)

ω(1)
(

t f

)
= 0, t = t f . (118)

The 1st-LASS represented by Equations (117) and (118) is independent of variations
in the feature functions (and/or parameters) so it would need to be solved only once,
numerically. In the present case, the 1st-LASS can be solved analytically to obtain the
following closed-form expression for the 1st-level adjoint sensitivity function ω(1)(t):

ω(1)(t) = H
(

t f − t
) cosh[tG(p)]

cosh
[
t f G(p)

]


2

, (119)

where H
(

t − t f

)
denotes the Heaviside functional.
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Using Equations (116)–(118) in Equation (115) yields the following expression for the
first-order total G-differential δE

(
t f

)
of the response E

(
t f

)
in terms of the 1st-level adjoint

function ω(1)(t):

δE
(

t f

)
= −(δF1)

∫ t f

0
ω(1)(t)E2(t)dt + (δF2)

∫ t f

0
ω(1)(t)dt. (120)

It follows from Equations (120), (119) and (109) that the two sensitivities of the response
E
(

t f

)
with respect to the two components of the feature function F ≜ (F1, F2)

† have the
following expressions:

∂E
(

t f

)
∂F1

= −
∫ t f

0
ω(1)(t)E2(t) dt =

1
2

[
F2(p)
F1(p)

]1/2
 t f

cosh2
[
t f G(p)

] −
tanh

[
t f G(p)

]
G(p)

; (121)

∂E
(

t f

)
∂F2

=
∫ t f

0
ω(1)(t)dt =

1
2G(p)

tanh
[
t f G(p)

]
+

t f

2 cosh2
[
t f G(p)

] . (122)

The above expressions are to be evaluated at the nominal parameter values but
the superscript “zero” has been omitted, for simplicity. The expressions obtained in
Equations (121) and (122) can be verified by differentiating the expression provided in
Equation (109), evaluated at a user-chosen time t = t f within the interval 0 < t f < ∞.

The sensitivities of the response E
(

t f

)
with respect to the model parameters and

initial condition are obtained by using the following “chain-rule” relationship:

∂E
(

t f ; F1; F2

)
∂pi

=
∂E

(
t f

)
∂F1

∂F1(p)
∂pi

+
∂E

(
t f

)
∂F2

∂F2(p)
∂pi

; i = 1, . . . , 7. (123)

The explicit expressions for the specific sensitivities of the response E
(

t f

)
with respect

to the parameters underlying the feature functions are obtained using Equation (123) in
conjunction with Equations (121) and (122) while recalling the definitions of the feature
functions F1(p) and F2(p) defined in Equation (106). The detailed expressions of these
sensitivities are as follows:

∂E
(

t f

)
∂αT

=
∂E

(
t f

)
∂F1

∂F1

∂αT
+

∂E
(

t f

)
∂F2

∂F2

∂αT
=

1
2lpcp

∂E
(

t f

)
∂F1

; (124)

∂E
(

t f

)
∂lp

=
∂E

(
t f

)
∂F1

∂F1

∂lp
+

∂E
(

t f

)
∂F2

∂F2

∂lp
= − αT

2
(
lp
)2cp

∂E
(

t f

)
∂F1

; (125)

∂E
(

t f

)
∂cp

=
∂E

(
t f

)
∂F1

∂F1

∂cp
+

∂E
(

t f

)
∂F2

∂F2

∂cp
= − αT

2
(
cp
)2lp

∂E
(

t f

)
∂F1

; (126)

∂E
(

t f

)
∂γ

=
∂E

(
t f

)
∂F1

∂F1

∂γ
+

∂E
(

t f

)
∂F2

∂F2

∂γ
= φ0σf N f

∂E
(

t f

)
∂F2

; (127)

∂E
(

t f

)
∂σf

=
∂E

(
t f

)
∂F1

∂F1

∂σf
+

∂E
(

t f

)
∂F2

∂F2

∂σf
= φ0γN f

∂E
(

t f

)
∂F2

; (128)

∂E
(

t f

)
∂N f

=
∂E

(
t f

)
∂F1

∂F1

∂N f
+

∂E
(

t f

)
∂F2

∂F2

∂N f
= φ0γσf

∂E
(

t f

)
∂F2

. (129)
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∂E
(

t f

)
∂φ0

=
∂E

(
t f

)
∂F1

∂F2

∂φ0
+

∂E
(

t f

)
∂F2

∂F2

∂φ0
= γσf N f

∂E
(

t f

)
∂F2

; (130)

Notably, the application of the 1st-FASAM-N requires one “large-scale” computation
to solve the 1st-LASS, cf. Equations (117) and (118), which is a single ODE, to obtain
the 1st-level adjoint function ω(1)(t), which is a scalar-valued function. However, solv-
ing the forward model, cf. Equation (17), and the corresponding 1st-LASS, comprising
Equations (117) and (118), would require the construction of a separate (albeit simpler)
NODE. The 1st-level adjoint function ω(1)(t) is subsequently used in performing
two integrals (quadrature) for obtaining the two sensitivities of the response E

(
t f

)
with

respect to the two components F1(p) and F2(p) of the feature function F(p) ≜ (F1, F2)
†.

Subsequently, all of the response sensitivities with respect to the model’s primary parame-
ters are obtained analytically by using the chain rule to differentiate the components of the
feature function with respect to the underlying model parameters and initial conditions.

In contradistinction, if one wishes to compute directly the sensitivities of the re-
sponse with respect to the model parameters and initial conditions, it has been shown
in Sections 5.1–5.4 that the original NODE can be used to solve (backward in time) the
1st-LASS, which comprises a system of three coupled ODEs (rather than a single ODE
if the 1st-FASAM is used) for obtaining the 1st-level adjoint function, which is a vector-

valued function comprising three components, cf. χ(1)(t) ≜
[
χ
(1)
1 (t),χ(1)2 (t),χ(1)3 (t)

]†

for the response E
(

t f

)
. The respective vector-valued 1st-level adjoint function is sub-

sequently used in computing six (rather than two, if the 1st-FASAM is used) integrals
(quadrature) for obtaining the six sensitivities of the respective response with respect to the
six model parameters.

Equations similar to Equation (17) can be derived for the reactor flux and reactor
temperature responses, so the 1st-FASAM can be applied in a similar fashion to compute
the first-order sensitivities of these responses. Using the sensitivities with respect to the
reactor temperature response would readily provide the first-order sensitivities of the
reactor thermal conductivity response. However, corresponding to each of these responses,
a specific NODE would need to be constructed. Of course, any of these specific NODEs
would have much simpler structures than the NODE for solving simultaneously the system
of coupled ODEs presented in Sections 5.1–5.4.

6. Use of First-Order Sensitivities for Uncertainty Analysis of NODE Responses

As has been discussed in Section 1, even if the NODE parameters are perfectly well
matched (after completing the “training”) to the physical model, the model’s parameters are
not known exactly but are affected by uncertainties stemming from the physical processes
that were used to determine them in the first place. Consequently, the NODE parameters,
namely: (i) the latent neurons with learnable scalar adjustable weights represented by the
components of the vector θ ≜ (θ1, . . . , θTW)†; (ii) the encoder’s “inputs” x ≜ [x1, . . . , xTI ]

†;
(iii) the encoder’s “learnable” scalar adjustable weights w ≜ (w1, . . . , wTEW)†; and (iv) the
decoder’s learnable scalar adjustable weights represented by the components of the vec-
tor φ ≜ (φ1, . . . , φTD)

†, are all affected by uncertainties. It is convenient to consider
that the vectors θ, x, w, and φ are the components of a (partitioned column) vector
α ≜ (α1, . . . , αTP)

†, where TP denotes “the total number of model parameters” and which
is defined as follows:

α ≜ (α1, . . . , αTP)
† ≜ (θ, x, w,φ)†; TP ≜ TW + TI + TEW + TD;

αi ≜ θi; i = 1, . . . , TW; αi ≜ xi; i = TW + 1, . . . , TW + TI;

αi ≜ wi; i = TW + TI + 1, . . . , TW + TI + TEW;

αi ≜ φi; i = TW + TI + TEW + 1, . . . , TW + TI + TEW + TD.

(131)



J. Nucl. Eng. 2024, 5 368

Although the model parameters are not bona fide random quantities, these model
parameters are considered in practice to be variates that obey a multivariate probability
distribution function, which will be denoted as pα(α). The multivariate distribution pα(α)
is seldom known exactly, particularly for large-scale systems involving many parameters.
Nevertheless, the various moments of pα(α) can be defined in a standard manner by
considering that pα(α) is formally defined on a domain Dα. When the vectors of parameters
θ, x, w, and φ are independent of each other, then pα(α) is given by the product of
the normalized probability distributions of the respective weights and inputs, namely:
pα(α) = p(θ)p(x)p(w)p(φ). The moments of the probability distribution pα(α) of model
parameters are defined as follows:

1. The expected (or mean) value of a model parameter αi, denoted as α0
i , is defined

as follows:
α0

i ≜ ⟨αi⟩α ≜
∫

Dα

αi pα(α)dα, i = 1, . . . , TP. (132)

In particular, the definition provided in Equation (132) implies that the components of
the vector pα(α) are defined similarly, namely: θ0

j ≜
〈
θj
〉

θ
≜

∫
Dθ

θj pθ(θ)dθ, j = 1, . . . , TW,

and so on. The expected parameter values α0
i , i = 1, . . . , TP, are considered to be the

“nominal values” for computing the nominal value r0
n

(
h0;φ0

)
of the response rn

[
h
(

t f

)
;φ

]
predicted by the NODE decoder. The nominal or mean values are considered to be the
components of the following vector of mean (expected) values:

α0 ≜
(

α0
1, . . . , α0

TP

)†
. (133)

2. The covariance, cov
(
αi, αj

)
, of two parameters, αi and αj, is defined as follows:

µ
ij
2 (α) ≜ cov

(
αi, αj

)
≜

〈(
αi − α0

i

)(
αj − α0

j

)〉
α
, i, j = 1, . . . , TP. (134)

The variance, var(αi), of a parameter αi, is defined as follows:

var(αi) ≜
〈(

αi − α0
i

)2
〉

α

, i = 1, . . . , TP. (135)

The standard deviation, σi, of αi is defined as follows: σi ≜
√

var(αi). The correlation,
ρij, between two parameters, αi and αj, is defined as follows:

ρij ≜ cov
(
αi, αj

)
/
(
σiσj

)
; i, j = 1, . . . , TP. (136)

3. The third-order moment, µ
ijk
3 , of the distribution of parameters and the associated

third-order correlation tijk among three parameters are defined as follows, for
i, j, k = 1, . . . , TP:

µ
ijk
3
(
αi, αj, αk

)
≜

〈(
αi − α0

i

)(
αj − α0

j

)(
αk − α0

k

)〉
α
≜ tijkσiσjσk. (137)

4. The fourth-order moment, µ
ijk𝓁
4 , of the distribution of parameters and the associated

fourth-order correlation qijk𝓁 among four parameters are defined as follows, for
i, j, k,𝓁 = 1, . . . , TP:

µ
ijk𝓁
4

(
αi, αj, αk, α𝓁

)
≜

〈(
αi − α0

i

)(
αj − α0

j

)(
αk − α0

k

)(
α𝓁 − α0

𝓁

)〉
α
≜ qijk𝓁σiσjσkσ𝓁 . (138)

The uncertainties induced in the decoder response by uncertainties in the NODE
model’s parameters can be quantified by using the “propagation of errors” concepts in-
troduced by Tukey [20] and generalized to sixth order (in the model correlations) by



J. Nucl. Eng. 2024, 5 369

Cacuci [21]. The “propagation of errors” method uses the Taylor series of a system re-
sponse, rn

[
h
(

t f

)
;φ

]
, n = 1, . . . , TR, around the expected (or nominal) parameter values

α0. When only first-order sensitivities are available, this Taylor series has the following
formal expression:

rn

[
h
(

t f

)
;φ

]
≜ rn(α) = rn

(
α0

)
+

TP

∑
i=1

∂rn
(
α0)

∂αi

(
αi − α0

i

)
+ O

[(
αi − α0

i

)2
]

= rn
(
α0)+ TW

∑
i=1

∂rn
(
α0)

∂θi

(
θi − θ0

i
)
+

TI
∑

i=1

∂rn
(
α0)

∂xi

(
xi − x0

i
)
+

TEW
∑

i=1

∂rn
(
α0)

∂wi

(
wi − w0

i
)

+
TD

∑
i=1

∂rn
(
α0)

∂φi

(
φi − φ0

i

)
+ O

[(
αi − α0

i

)2
]

.

(139)

The expectation (value), E(rn), of a response rn

[
h
(

t f

)
;φ

]
, n = 1, . . . , TR, is obtained

using Equation (139), which yields the following result:

E(rn) ≜
∫

Dα

rn(α)pα(α)dα = rn

(
α0

)
+ O

∫
Dα

(
αi − α0

i

)2
pα(α)dα

. (140)

The expression of the covariance between a parameter αi, i = 1, . . . , TP, and a response
rn

[
h
(

t f

)
;φ

]
, n = 1, . . . , TR, is obtained using Equations (139) and (136), which yields the

following result:

cov(αi, rn) ≜
∫

Dα

(
αi − α0

i

)
rn(α)pα(α)dα =

TP

∑
j=1

∂rn
(
α0)

∂αj
cov

(
αi, αj

)
+O

∫
Dα

(
αi − α0

i

)3
pα(α)dα

.

(141)

The expression of the covariance, cov(rk, r𝓁), between two decoder responses
rk

[
h
(

t f

)
;φ

]
and r𝓁

[
h
(

t f

)
;φ

]
is obtained using Equations (139), (140) and (136), which

yields the following result:

cov(rk, r𝓁) ≜
∫

Dα

[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)]pα(α)dα

=
TP

∑
i=1

TP

∑
j=1

∂rk
(
α0)

∂αi

∂r𝓁
(
α0)

∂αj
cov

(
αi, αj

)
+ O

∫
Dα

(
αi − α0

i

)3
pα(α)dα

.
(142)

The expression of the triple-moment, µ3(rk, r𝓁, rm), among three responses, rk

[
h
(

t f

)
;φ

]
,

r𝓁
[
h
(

t f

)
;φ

]
, and rm

[
h
(

t f

)
;φ

]
, is obtained using Equations (139), (140) and (137), which

yields the following result:

µ3(rk, r𝓁 , rm) ≜
∫

Dα

[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)][rm(α)− E(rm)]pα(α)dα

=
TP

∑
a=1

TP

∑
b=1

TP

∑
c=1

∂rk
(
α0)

∂αa

∂r𝓁
(
α0)

∂αb

∂rm
(
α0)

∂αc
µ

ijk
3 (αa, αb, αc) + O

∫
Dα

(
αi − α0

i

)4
pα(α)dα

.
(143)
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The expression of the triple-moment µ3(αi, rk, r𝓁), among one parameter, αi, and
two responses, rk(α) and r𝓁(α), is obtained using Equations (139), (140) and (137), which
yields the following result:

µ3(αi, rk, r𝓁) ≜
∫

Dα

(
αi − α0

i

)
[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)]pα(α)dα

=
TP

∑
a=1

TP

∑
b=1

∂rk
(
α0)

∂αa

∂r𝓁
(
α0)

∂αb
µiab

3 (αi, αa, αb) + O

∫
Dα

(
αi − α0

i

)4
pα(α)dα

.
(144)

The expression of the triple-moment, among two parameters αi, αj and one response,
rk(α), is obtained using Equations (139), (140) and (137), which yields the following result:

µ3
(
αi, αj, rk

)
≜

∫
Dα

(
αi − α0

i

)(
αj − α0

j

)
[rk(α)− E(rk)]pα(α)dα

=
TP

∑
a=1

∂rk
(
α0)

∂αa
µ

ija
3
(
αi, αj, αa

)
+ O

∫
Dα

(
αi − α0

i

)4
pα(α)dα

.
(145)

The expression of the quadruple-moment, denoted as µ4(rk, r𝓁 , rm, rn), among four
responses, rk

[
h
(

t f

)
;φ

]
, r𝓁

[
h
(

t f

)
;φ

]
, rm

[
h
(

t f

)
;φ

]
, and rn

[
h
(

t f

)
;φ

]
, is obtained using

Equations (138)–(140), which yields the following result:

µ
(1)
4 (rk, rl , rm, rn)

≜
∫

Dα

[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)][rm(α)− E(rm)][rn(α)− E(rn)]pα(α)dα

=
TP

∑
a=1

TP

∑
b=1

TP

∑
c=1

TP

∑
d=1

∂rk
(
α0)

∂αa

∂r𝓁
(
α0)

∂αb

∂rm
(
α0)

∂αc

∂rn
(
α0)

∂αd
µabcd

4 (αa, αb, αc, αd) + O

∫
Dα

(
αi − α0

i

)5
pα(α)dα

.

(146)

The expression of the quadruple-moment, denoted as µ4(αi, rk, r𝓁 , rm), among one
parameter, αi, and three responses, rk

[
h
(

t f

)
;φ

]
, r𝓁

[
h
(

t f

)
;φ

]
, and rm

[
h
(

t f

)
;φ

]
, is ob-

tained using Equations (138)–(140), which yields the following result:

µ4(αi, rk, r𝓁 , rm)

≜
∫

Dα

(
αi − α0

i

)
[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)][rm(α)− E(rm)]pα(α)dα

=
TP

∑
a=1

TP

∑
b=1

TP

∑
c=1

∂rk
(
α0)

∂αa

∂r𝓁
(
α0)

∂αb

∂rm
(
α0)

∂αb
µabci

4 (αa, αb, αc, αi) + O

∫
Dα

(
αi − α0

i

)5
pα(α)dα

.

(147)

The expression of the quadruple-moment, denoted as µ4
(
αi, αj, rk, r𝓁

)
, among

two parameters, αi and αj, and two responses, rk

[
h
(

t f

)
;φ

]
and r𝓁

[
h
(

t f

)
;φ

]
, is obtained

using Equations (138)–(140), which yields the following result:

µ4
(
αi, αj, rk, r𝓁

)
≜

∫
Dα

(
αi − α0

i

)(
αj − α0

j

)
[rk(α)− E(rk)][r𝓁(α)− E(r𝓁)]pα(α)dα

=
TP

∑
a=1

TP

∑
b=1

∂rk
(
α0)

∂αa

∂r𝓁
(
α0)

∂αb
µ

abij
4

(
αa, αb, αi, αj

)
+ O

∫
Dα

(
αi − α0

i

)5
pα(α)dα

.
(148)
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The expression of the quadruple-moment, denoted as µ4
(
αi, αj, αk, r𝓁

)
, among

three parameters αi, αj, αk, and one response, r𝓁
[
h
(

t f

)
;φ

]
, is obtained using

Equations (138)–(140), which yields the following result:

µ4
(
αi, αj, αk, R𝓁

)
≜

∫
Dα

(
αi − α0

i

)(
αj − α0

j

)(
αk − α0

k

)
[r𝓁(α)− E(r𝓁)]pα(α)dα

=
TP

∑
a=1

∂r𝓁
(
α0)

∂αa
µ

aijk
4

(
αa, αi, αj, αk

)
+ O

∫
Dα

(
αi − α0

i

)5
pα(α)dα

.
(149)

7. Discussion and Conclusions

This work has introduced the mathematical framework of the novel “First-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Ordinary Differ-
ential Equations” (1st-CASAM-NODE) which yields exact expressions for the first-order
sensitivities of NODE decoder responses to the NODE parameters, including encoder
initial conditions, while enabling the most efficient computation of these sensitivities. The
application of the 1st-CASAM-NODE has been illustrated by using the Nordheim–Fuchs
reactor dynamics/safety phenomenological model, which is representative of physical
systems that would be modeled by NODEs while admitting exact analytical solutions
for all quantities of interest (hidden states, decoder outputs, sensitivities with respect to
all parameters and initial conditions, etc.). It has also been shown that if the equations
underlying the physical model can be re-arranged so as to group the parameters/weights
into functional “features” of several parameters, then the “First-Order Feature Adjoint
Sensitivity Analysis Methodology for Nonlinear Systems” (1st-FASAM-N) can be advanta-
geously applied to compute the response sensitivities with respect to the feature functions
(which are by definition fewer than the number of parameters). The response sensitivities
with respect to the primary parameters are subsequently obtained analytically by using
the chain rule to differentiate the components of the feature function with respect to the
underlying model parameters and initial conditions. Applying the 1st-FASAM-N, however,
would require the construction of a specific NODE for this purpose.

This work has also laid the foundation for the ongoing work on conceiving the
“Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Neural Or-
dinary Differential Equations” (2nd-CASAM-NODE) which aims at yielding exact ex-
pressions for the second-order sensitivities of NODE decoder responses to the NODE
parameters and initial conditions while enabling the most efficient computation of
these sensitivities.
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