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Abstract: Precise gamma-ray spectral analysis is crucial in high-stakes applications, such as nuclear
security. Research efforts toward implementing machine learning (ML) approaches for accurate
analysis are limited by the resemblance of the training data to the testing scenarios. The underlying
spectral shape of synthetic data may not perfectly reflect measured configurations, and measure-
ment campaigns may be limited by resource constraints. Consequently, ML algorithms for isotope
identification must maintain accurate classification performance under domain shifts between the
training and testing data. To this end, four different classifiers (Ridge, Random Forest, Extreme
Gradient Boosting, and Multilayer Perceptron) were trained on the same dataset and evaluated on
twelve other datasets with varying standoff distances, shielding, and background configurations.
A tailored statistical approach was introduced to quantify the similarity between the training and
testing configurations, which was then related to the predictive performance. Wilcoxon signed-rank
tests revealed that the OVR-wrapped XGB significantly outperformed the other algorithms, with
confidence levels of 99.0% or above for the 133Ba, ©0Co, 137Cs, and 152Eu sources. The findings from
this work are significant as they outline techniques to promote the development of robust ML-based
approaches for isotope identification.

Keywords: isotope identification; gamma-ray spectroscopy; machine learning; domain adaptation

1. Introduction

Accurate and robust gamma-ray spectral analysis is essential for disciplines such as
nuclear security and nuclear forensics. In these applications, high-consequence decisions
and responses can be determined based on the isotopic constituents identified from spectral
data. Traditionally, analysis of this data relies on assessments by a trained spectroscopist,
who often uses peak finding and template matching tools [1,2]. While these analytical tools
are helpful for small-scale analyses, dealing with large streams of spectral data in this man-
ner requires the intervention of many trained spectroscopists. Consequently, research and
development efforts have attempted to automate the analysis of spectral data through the
incorporation of various machine learning (ML) and pattern recognition techniques [3-11].
Automated algorithms for isotope identification could provide decisionmakers with rapid
identification capabilities without needing constant intervention from a trained specialist.
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A challenge to developing predictive models for isotope identification is significant
variations between the training and testing data. Gamma-emitting radionuclides have
unique spectral signatures which can be used to ascertain isotopic constituents from a
given spectrum. However, depending on the measurement configurations, the detector
response may convolute the spectral signature. For instance, a relatively large standoff
distance may decrease the total counts received by a detector and increase the statistical
noise. Other operationally relevant parameters that can distort a spectral response include,
amongst others, shielding and the background. From a classification perspective, these
distortions introduce a degree of difficulty for the ML models because each isotope is
associated with a range of spectral responses, which can add uncertainty to the ML-based
isotopic predictions. Without providing any a priori source information, large volumes of
spectral data may be necessary for the models to learn the isotopic signatures. Procuring
training sets through measurement campaigns may be expensive from a time and resource
perspective and may not be feasible for sensitive measurement configurations. Thus,
simulated detector responses can significantly benefit the development of robust ML
models by synthesizing large quantities of spectral data. Nevertheless, creating simulations
that precisely represent a measured configuration can be challenging [12-14]. Moreover, it
may not be guaranteed that the measurement parameters of a recorded sample fall within
the range of configurations used to train the models.

Previous studies explored how well ML models can identify isotopes when introducing
spectral variations between training and testing data. These variations came in the form of
training on synthetic data and testing on measured data [15-18], changing the measurement
configurations between the training and testing simulations [19], and training on one set of
synthetic configurations and testing on different sets of measured configurations [20-23].
In all of these papers, the researchers highlight the dynamics of the predictive behavior
as a function of the changing measurement parameters. Additionally, some of the studies
provide visual comparisons and physics-based explanations for the differences in the
spectral shapes, but little effort has been directed toward quantifying the similarity between
the training and testing configurations.

This work evaluates ML approaches for multi-isotope identification contextualized
by the variations between training and testing data. To this end, statistical measures are
leveraged to quantify the resemblance of the training data to the testing data, which is then
related to the ML predictive performance. Several algorithms are tested in this study to
assess the ability of the various models to identify isotopes despite spectral shifts. While
many physical parameters influence the change in the spectral shape, this work focuses
on changes to the standoff distance, shielding, and background environment, as these
parameters are very pertinent to nuclear security applications. It should be noted that
while gain shifts can significantly influence the spectral shape and isotope identification
performance [19], many studies introduce techniques for data processing to correct for
calibration shifts that may occur during regular detector operation [24-26] and, therefore,
are not included in the body of this work.

This paper introduces a systematic procedure whereby domain adaptation is quan-
tified for gamma-ray spectra and then related to the predictive behavior for several ML
approaches. These findings can be leveraged in future algorithm-development studies,
where authors promote the generalizability of their approach.

2. Materials and Methods

To evaluate ML approaches for multi-isotope identification, several datasets were
created for this study. One dataset was used to train the ML models, while twelve oth-
ers were employed to assess predictive performance under different standoff distances,
shielding, and background conditions. The training data exclusively consist of synthetic
data, whereas synthetic and measured testing datasets are utilized. Central to this work
is the assessment of the predictive behavior of the ML models in terms of the spectral
similarity between the training and testing configurations. Thus, the methodology section
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outlines the techniques leveraged for dataset procurement, the ML algorithms for isotope
identification, and statistical methods to quantify spectral comparisons.

2.1. Problem Definition

At the core of this work is the quantification of domain adaptation on a multilabel
classification task. Binary relevance, or one-vs-rest (OVR), approaches were employed
for the classification predictions [9,27], which can be defined formally as follows: Let
X = RM be the M-dimensional input space and let Y = {1,...,K} represent the label
space, consisting of K class labels. Let D = {(x1,y;), (x2,¥,), ..., (xN, ¥y) } be a training set

of N spectra-label pairs, where x,, € & is an M-dimensional feature vector [x}l, x,zl, cer, x,lm ,

and each y, € {0,1}" is a K-bit binary vector [y},42,...,yX], with y* = 0(1) indicating
when class-k is absent (present) for xp.

In the binary relevance approach, the multilabel classification problem is transformed
into K binary classification problems, one for each label in ). For each label k € ), a
binary classifier f; : X — {0,1} is fitted using training data, D, to predict whether class k
is present in the input xn,. To predict the labels for a new input, ¥’ = [x'},x2,...,x’M], each
binary classifier, f, is applied to x” independently, and the labels with positive predictions
are combined to form the predicted labels. These predicted labels are then compared to the
ground truth labels to assess the accuracy of the ML model, as formalized in Section 2.4.

Domain adaptation, or domain shifts, appear in this problem formulation when
the training and testing data originate from different measurement configurations. More
formally, letx, € X andx’ € X' with X # X' and both the training and testing label spaces
be represented by ) = {1,...,K}. The objective, then, is to quantify the similarity between
X and X’, and relate these findings to the predictive performance of the ML models.

2.2. Data Generation

The datasets in this study were developed to represent a general nuclear security
scenario where preliminary analysis is required to assess the isotopic constituents of a
radiological environment. To this end, spectral data were both simulated and measured.
The synthetic data were simulated with the Gamma-Ray Detector Response and Analysis
Software (GADRAS v19.3.5) [28]. GADRAS is a semi-empirical nuclear transport code that
generates detector response functions for a given detector from calibration data. In addition
to GADRAS, the Python-based software package PyRIID v2.0.0, which is another product
of Sandia National Laboratories, was utilized for dataset procurement, as it provides
convenient support for batch GADRAS simulations [29]. Spectral simulations represent a
30 s collection with a LaBrz-IdentiFINDER handheld detector. The detector has a resolution
of 3.48% at 662 keV; a cylindrical crystal has a volume of 15 cm® and 1024 channels as
pre-set in GADRAS. The detector was modeled 56 cm above the ground and includes the
internal gamma-ray emissions from the detector. The sources simulated in this study were
26 commonly used radioisotopes with nominal activities selected to all return roughly
400 cps, as observed in Table 1. Each simulation comprised a mixture of three isotopes
and a background term. Terrestrial (K, U, Th) and cosmic background contributions were
acquired through GADRAS'’s background functionality with a background count rate of
50 cps. It should be noted that three isotopes were randomly selected for each spectrum, and
their relative contributions were randomized through PyRIID’s incorporation of Dirichlet
distributions [30].
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Table 1. Sources and activities (in pCi) used for the simulated data.

Source Activity (uCi) Source Activity (uCi)
241 Am 4.86 133Ba 0.90
207B4 1.04 109¢q 3.37
57Co 2.04 60Co 2.04
Slcr 25.0 1B4Cg 1.47
137¢g 3.46 152py 1.26
18p 1.47 67Ga 2.38
1231 1.86 1311 2.40
iy 0.95 19214 1.13
177Lu 8.96 54Mn 3.62
Mo 8.54 22Na 1.13
103pq 8.69 75Ge 1.23
1535m 2.10 99m T 2.22
133xe 243 88y 2.05

The same LaBr; IdentiFINDER detector leveraged for the simulations was employed
for the measured collections. It should be noted that the calibration of the simulated detector
was made to match that of the experimental test data. The sources used for measurements
are detailed in Table 2. Because of the limitations in source accessibility, measured data
were collected with one, two, and three source configurations and ten measurements for
each of the fourteen possible source combinations. For this reason, the measured and
simulated results are presented separately in Section 3.

Table 2. Sources and activities (in pCi) used for the measured data.

Source Activity (uCi) Source Activity (uCi)
13583 0.34 0Co 0.12
137¢s 0.17 132By 043

The various simulated and measured detection configurations are outlined in Ta-
ble 3. These configurations represent the parameters leveraged to create the mixed-isotope
spectral data to train and test the machine learning models. The reference configuration
represents the 10 cm standoff distance without shielding, using data with a background
representing Albuquerque. This is referred to as the “reference configuration”, as both
training and testing datasets were created using these parameters, thus denoting a sce-
nario without domain shifts. Domain shifts were introduced into the study by generating
testing configurations with different standoff distances, shielding, and background envi-
ronments. The training and testing spectra consisted of mixed-source spectra and include
background contributions.

In addition to the physical parameters, Table 3 summarizes the number of spectra
associated with each dataset and the average number of counts for those spectra. The
synthetic data randomly select contributions from three isotopes with the Dirichlet distri-
bution to return total counts that are normally distributed. The measured configurations
leverage single-source, double-source, and triple-source measurements, making the counts
for these configurations non-parametric. Consequently, alongside the mean, the 75-25%
interquartile ranges (IQRs) of the counts are reported. An image of one of the measurement
configurations and detector can be observed in Figure 1.
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Table 3. Training and testing measurement configurations. Simulations are denoted by “Sim”,
measurements are denoted by “Meas”, AD represents the areal density for the shielding, and AN
stands for the atomic number. Note that all configurations utilize the same LaBr; IdentiFINDER
detector and a live time of 30 s.

Train/Test ~ Sim./Meas. Dist. (cm) Shielding Background # of Spectra # of Counts &

IQR
Train Sim. 10 None Albuq“g;‘g‘e' NM, 200,000 13,668.2 + 158.0
Test Sim. 10 None Albuq“S;une' NM, 50,000 13,667.2 + 158.0
Test Sim. 50 None Albuquerque, NM, 50,000 2138.0 + 62.0
USA
Test Sim. 100 None Albuq“g;‘g‘e' NM, 50,000 1683.3 + 56.0
Test Sim. 10 AD: 5 g/cm? AN: 6 Albuqugquue' NM, 50,000 12,189.2 + 149.0
Test Sim. 10 AD: 5 g/cm? AN: 20 Albuqugg‘};e’ NM, 50,000 9253.7 + 130.0
Test Sim. 10 AD: 10 g/cm? AN: 20 Albuq“g;‘g‘e' NM, 50,000 7839.2 + 119.0
Test Sim. 10 None Washington, DC, USA 50,000 13,668.8 £ 158.0
Test Sim. 10 None Pittsburgh, PA, USA 50,000 13,667.8 + 158.0
Test Meas. 10 None Fort Belvoir, VA, USA 140 6997.6 + 1773.8
Test Meas. 50 None Fort Belvoir, VA, USA 140 1709.00 £+ 149.5
Test Meas. 10 10 cm Concrete Fort Belvoir, VA, USA 140 3756.8 + 1674.5
Test Meas. 10 1 cm Lead-Pig Fort Belvoir, VA, USA 140 2521.3 £+ 1085.8
Side View
| 10 cm |
Source
[ X _
o
Detector 56 cm
Ground

Figure 1. (Left) General schematic of simulated configurations. (Right) Measurement configuration
with three sources and 10 cm of concrete between the sources and the detector.

2.3. Algorithms

Given the variations between the training and testing data, several algorithms were
selected to examine their predictive performance. Before analysis, the spectral data were
normalized such that the sum of counts in a spectrum was equal to 1.0. These algorithms
were implemented in a one-vs-rest (OVR) pipeline, where each model comprised 26 binary
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classifiers—one for each source. Since multiple isotopes may be present in the testing
spectra, this task can be categorized as multilabel classification in the machine learning
domain. The Random Forest (RF), Extreme Gradient Boosting (XGB), and Multilayer
Perceptron (MLP) classifiers were selected as they exhibited excellent performances when
previously applied in OVR implementations [9,31]. Additionally, this study incorporated
a Ridge Linear Model (Ridge) with an optimized alpha parameter to broaden the range
of algorithmic architectures under evaluation. Table 4 details the classifiers, some of their
parameters, and references to the Python libraries leveraged for implementation. Although
this work utilizes a variety of algorithms, further research could focus on optimizing and
developing models to achieve more accurate predictions.

Table 4. Algorithms and some of their parameters for multi-isotope identification. These algorithms
were all implemented in a one-vs-rest configuration with the referenced Python libraries and their
corresponding default parameters.

Classifiers Parameters
Ridge Linear Model (Ridge) [32] Alpha: 0.001
Random Forest (RF) [32] Criterion: Gini, n_estimators: 100
Extreme Gradient Boosting (XGB) [33] Objective: Binary logistic

Solver: ADAM, Activation Function: ReLu,

Multilayer Perceptron (MLP) [32] Hidden Layers: (512)

2.4. Metrics

Several metrics were leveraged to evaluate ML approaches for multi-isotope identi-
fication as contextualized by the variations between training and testing configurations.
The F1-score was leveraged to quantify the predictive performance of the ML models on a
given dataset. The F1l-score is the harmonic mean of the precision and recall and is formally
defined as follows:

TP

F1= - ,
TP + 1(FP +FN)

1)

where TP, FP, and FN represent the number of true positives, false positives, and false
negative predictions, respectively. Perfect predictions across a dataset return an F1-score of
1.0, whereas 0.0 indicates no TPs were identified.

To quantify the similarity between the training and testing configurations, compar-
isons must be made of the spectral shapes of the isotopes being classified. A given detector
response is influenced by many factors, such as the detector itself, the surrounding mea-
surement environment, and Poisson statistics. However, considering all these factors when
making spectral comparisons can be difficult. For instance, analyzing the statistical dif-
ference between two spectra may not be conclusive, given that recollecting the spectra
under the same conditions would return a different comparison quantity solely due to the
statistical noise. These fluctuations may also make it difficult to account for changes in the
detector response resulting from environmental changes, such as if shielding is introduced.
Thus, it is imperative to consider a tailored statistical measure to compare the training and
testing configurations. While this measure was initially introduced in another work [34], a
brief formal derivation is provided as follows with Equations (2)—(6).

Let p represent a measurement configuration, such as that used to train the ML models,
where the source-to-detector-standoff distance was 10 cm, there is no shielding, and the
background spectral signature is patterned after Albuquerque, NM. Let g represent another
measurement configuration, such as one with a standoff distance of 10 cm, shielding with
areal density (AD) of 10 g/cm?, and an atomic number (AN) of 20. Both configurations
p and g can be represented by their spectral seed, S, which is the underlying spectral
shape without statistical noise and x is a sample from seed S with statistical uncertainties.
Here, X contains N samples of x. In terms of the simulations, a seed, S(p), represents
the theoretical detector response for configuration p and is void of statistical noise or
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uncertainties. The samples, X(p), are then comparable to measured data, as they are
subject to Poisson statistics.

Next, let ¥, »,, designate the average Jensen Shannon distance (JSD) between S(p)
and the N samples of x(p) comprising X(p).

N
¥, = D ISP (p), -

And, similarly, let ¥, ; ; represents the average JSD between S(p) and X(q) as follows :

N
¥, = SOOI (7). o

Now with ¥y, , and ¥}, ; 4 defined, the difference between the two can be represented as
follows:

A(p,q) = |Tw,r7 = Yyupal- (4)

Then, let the dissimilarity d(p, ) between configurations p and g be defined by normalizing
A(p,q) by the standard deviation of the self-same comparisons S(p)-to-X(p) as follows:

v WL USDS) I (p)) — Fupy)’
app

N -1 ©)
and Ap,0)
P9
d(p,q) = ' (6)
‘Fa,p,p
It should be noted that the [SD from Equations (2) and (3) was calculated as follows:
KLD(S C + KLD(x C
J5D(S(p)le(p)) = 1 FLE@NCG) * KEDGGICE), )

where KLD(S(p)||C(p)) is the Kullback-Leibler divergence of S(p) and C(p) as follows:

KLDseIICE) = [ sipos (&5 ), ®)

and C(p) is the arithmetic mean of S(p) and x(p), where both S(p) and x(p) are normalized
as follows:

C(p) = 5(S(p) +x(p)) ©)

In a less formal description, to assess the similarity between the two measurement
configurations p and g, samples, X(p), are compared to the seed, S(p). Larger statistical
uncertainties in the samples X(p) will lead to larger JSD values when compared to S(p).
These statistical uncertainties will return larger values for ¥y, . Then, when samples from
the comparison configuration X(gq) are compared to S(p), the statistical uncertainties in
the baseline samples, X(p), contextualize the significance of the change in the underlying
spectral shape. Figures 2—4 in Section 3 provide a visual example of these comparisons and
their importance in quantifying dissimilarity.

The intent of this dissimilarity measure is to quantify the domain shifts for each isotope
represented in this analysis given that the isotopes are the targets being predicted by the ML
models. However, the training and testing data comprised mixed isotope spectra, which
convolutes the quantification of changes to the spectral shape at the isotopic level. Thus,
single isotope seeds and samples from the same training and testing configurations were
simulated separately to quantify the domain shifts. It is important to note that the measure
of dissimilarity quantifies the spectral differences among configurations for individual
isotopes. Although these calculations are based on data distinct from those used for training
and testing the ML models, they utilize the same training and testing configurations.
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Figure 2. Visual comparison of the seed, S(p), and sample, x(p), for a 13’Cs source. This is one of
the 10,000 baseline comparisons for 137Cs. 1t should be noted that counts from x(p) in the 662 keV
photopeak are comparable to that of the seed, S(p), thus making it difficult to visualize the sample
in this region. Also, counts with energies above the '3’Cs photopeak may be attributed to pile-up
and statistical uncertainties inherent in background subtraction, which was only employed for the
dissimilarity calculations.
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Figure 3. Baseline comparisons between the seeds, S(p), and samples, X(p), of the reference con-
figuration. The mean line represents ¥, ; ,, while the error bars represent ¥y, ,. These values

are considered “baselines” as they will contextualize the eventual JSD comparisons between S(p)
and X(q).
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Figure 4. The average and standard deviation values for the seed-to-sample comparisons for both the
Y, and ¥; comparisons for each source (top). These comparisons were leveraged to calculate the
dissimilarity measures for each isotope (bottom). The asterisk denotes the reference configuration
where no domain shifts exist between the training and testing data.

To quantify the differences between the training and testing configurations, 10,000 single-
isotope samples were generated for the 26 isotopes analyzed in this study across the eight
simulated testing configurations and the one training configuration outlined in Table 3.
The four measured datasets comprise ten single-isotope samples for 133B,, 152Ry, 137Cs,
and ®Co, which were leveraged for these spectral comparisons. Background subtraction
was employed for these simulated and measured samples to enable isotopic comparisons
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between seeds and samples. The samples from these configurations were then compared
to their corresponding isotopic seed from the training configuration to calculate the dis-
similarity measure. Theoretically, d(p,q) has a lower bound of 0.0, which indicates that
Y,pp == Yu,p,q and an upper bound of co, when ¥ ;, , == 0. Practically, more similar
configurations will have lower values, and more dissimilar configurations will have greater
values. Section 3 depicts visual descriptions and examples of the dissimilarity measure.

3. Results

In this study, the performance of various ML models was investigated using statisti-
cally quantified variations in training and testing gamma-ray spectral data. The section is
structured as follows: First, the reference scenario is examined, where training and testing
data originate from the same configuration. This is followed by discussions on the influence
of the standoff distance, shielding, and changing background. The measured data results
are found at the end of this section.

3.1. Reference Configuration

Given that this work aims to evaluate the prediction behavior of various ML models
due to variations between the training and testing data, it is prudent to begin the discussion
whereby the training and testing data originate from the same measurement parameters,
hereafter known as the reference configuration. As detailed in Table 3, this configuration
consists of a standoff distance of 10 cm, no shielding, and a background resembling
Albuquerque, NM. While significant dissimilarities are not expected between the training
and testing data for this reference configuration, a thorough description of its calculation is
provided to support the reader’s intuition throughout the remainder of the study.

The seeds and samples from the reference configuration were compared to each other.
An example of the 137Cs seed, S(p), and one sample, x(p), can be observed in Figure 2. As a
reminder, these single isotope spectra were leveraged for the dissimilarity calculations, but
the isotope identification predictions were performed on mixed-isotope spectra. The JSD
is leveraged to quantify the similarity between a seed, S(p), and a corresponding sample,
x(p). It then becomes readily apparent from Figure 2 how there would be a range of [SD
values given N samples, X(p), all with slightly different statistical fluctuations. These
seed-to-sample comparisons, JSD(S(p)||X(p)), were then carried out for all 26 isotopes
and background (BG). The arithmetic means and standard deviations of these baseline
comparisons are depicted in Figure 3.

Next, the samples, X(g), were compared to the seed, S(p), which then led to the
dissimilarity calculations detailed in Equations (2)-(6). In this subsection, there are no
domain shifts as X(p) and X(gq) are both from the same reference configuration. However,
all other subsections leverage different configurations for g to quantify the dissimilarity
between the training and testing configurations. Figure 4 depicts the results of these
comparisons, which, as expected, are very similar. The average JSD values and their
uncertainties here will be used as references when evaluating the other configurations
detailed in Table 3. As seen in the subsequent sections, the dissimilarity values reported in
Figure 4 are relatively low, thus communicating the close resemblance of the two datasets.
It should be noted that the background (BG) terms returned higher JSD values due to more
significant statistical uncertainty. However, there was still a low dissimilarity value, which
was to be expected as both background terms originated from the same configuration.

Figure 5 shows the Fl-scores for the four algorithms’ classification performances.
Overall, the RE, XGB, and MLP classifiers performed better than the Ridge classifiers.
These results serve as reference points, allowing contextualization of the dynamics of
the predictive performance when domain shifts are introduced in the testing data. It is
important to remind the reader that the data leveraged for the classification task consisted of
mixed isotope samples (with statistical noise), as detailed in Section 2.2, while the data used
to determine the dissimilarity measures derive from the same measurement configurations,
but with only a single isotope, as detailed in Section 2.3.
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Figure 5. Fl-scores for each isotope are color-coded for the four algorithms under evaluation.
Predictions were made on the reference configuration where there are no domain shifts. A narrow
view of the Fl-scores is leveraged in this figure to enhance the interpretability of the overlapping
markers. However, most other figures will provide a y-axis range of 0-1.

3.2. Results for Varying Standoff Distance Configurations

Adjusting the standoff distance between a source and a gamma detector has several
effects on the corresponding detector response. Increases in standoff distance reduce the
total number of recorded counts and increase the spectra’s statistical uncertainty. There
may also be more ground scatter with larger distances and fewer pile-up events. All the
configurations had minimal dead times <1%; thus, pile-up considerations are negligible.
When comparing Figure 6 to Figure 2, the characteristic 1’ Cs 662 keV photopeak is still
readily apparent; however, there is a greater degree of statistical noise throughout the
spectrum, thus leading to an increased JSD value.
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Figure 6. Visual comparison of the 13’Cs seed, S(p), where p is the reference configuration and a 13’Cs
sample x(g), where g is the configuration with a standoff distance of 50 cm. Counts with energies
above the 137Cs photopeak are unlikely to be attributed to pile-up but rather statistical uncertainties
inherent in background subtraction, which was only employed for the dissimilarity calculations.
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While Figure 6 depicts a single seed-to-sample comparison with a standoff distance
of 50 cm, Figure 7 illustrates the dissimilarity between the reference configuration (10 cm
standoff) and the 50 cm and 100 cm standoff configurations across all sources examined
in this study. There are several key factors to consider when reviewing these dissimilarity
results. First, the most significant, or largest dissimilarity is returned with the greatest
standoff distance. This result is expected, as this configuration is prone to the greatest
statistical uncertainty and, thus, the most significant difference in the spectral shape from
the 10 cm reference configuration. Next, the dissimilarity in the BG does not return
substantial changes such as those from the other sources. This is not surprising given that
changes in the standoff distance do not influence the change in the spectral shape.
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Figure 7. Dissimilarity values for the configurations with varying standoff distances. The blue circles
represent the dissimilarity values for the reference configuration, and the orange markers are all of
the configurations under comparison.

Given that the dissimilarity has been quantified across sources and detection con-
figurations, it is prudent to relate these findings to the classification performance. The
Fl-scores and the dissimilarity values for the various isotopes are depicted in Figure 8.
Horizontal lines are placed in all of the subplots where the F1-score is equal to 0.75, as this
provides a quick visual indication of the results. As a general assessment, the predictive
performance degraded across the four algorithms as the dissimilarity increased. Examining
the predictive performance at the isotopic level reveals interesting results. Over half of
the isotopes returned an Fl-score over 0.75 for at least one of the four algorithms and
a dissimilarity value greater than 100. While no F1-scores above 0.75 were reported for
the configuration with a standoff distance of 100 cm, several isotopes were very close, as
follows: 21Cr, 137Cs, 1231 54Mn, and 193Pd.
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Figure 8. F1-scores and dissimilarity values for the 26 isotopes under varying standoff configurations.

The different marker shapes represent the various configurations for the testing datasets, and the

color of the markers denotes the algorithm. The asterisk indicates the reference configuration. A

dotted line at F1 = 0.75 was included as a visual reference for the performance.
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To understand the performance comprehensively, the F1-scores of the four algorithms
and the dissimilarity values were averaged across isotopes for each configuration and
presented in Figure 9. The MLP classifier performed well on the reference configuration
and then returned F1-scores that averaged below 0.5 when the standoff distance increased.
The Ridge classifier returned the lowest average F1-scores across the configurations. The
RF and XGB classifiers performed relatively well, with the only RF classifier returning an
average F1-score above 0.75 for the 50 cm configuration.
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Figure 9. Fl-scores and dissimilarity values averaged over all isotopes for each algorithm and
standoff distance configuration. The different marker shapes represent the configurations for the
testing datasets, and the marker colors denote the algorithms. The asterisk indicates the reference
configuration. A dotted line at F1 = 0.75 was included as a visual reference for the performance.

3.3. Results for Varying Shielding Configurations

One expects variations in the AN and AD of a measurement configuration to influence
the underlying spectral shape and statistical uncertainties associated with a spectrum.
For instance, the probability of photoelectric absorption increases with the AN and as
the energy of the incident photons decreases. Compton scattering events may also occur
within a shielding material, thus diminishing the energy of incoming photons and altering
the resulting spectral shape. As an example, Figure 10 depicts a seed, S(p), from the
reference configuration p, which has no shielding, and a sample from a configuration with
iron shielding. Comparing Figure 10 to Figure 2 highlights these changes in the detector
response, as the shielding causes a decrease in the magnitude of the '¥’Cs photopeak,
the Compton edge and backscatter peak are less defined, the low-energy X-ray peak is
squelched, and the overall statistical uncertainty increases. All these variations help drive
the increase in the JSD between the seed, S(p), and the sample, x(q).
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Figure 10. Visual comparison of the 137Cs seed, S(p), where p is the reference configuration, and a
137Cs sample, x(q), where g is the configuration with shielding (AD: 10 g/cm?, AN: 20). Counts with
energies above the 13Cs photopeak are unlikely to be attributed to pile-up but rather statistical uncer-
tainties inherent in background subtraction, which was only employed for the dissimilarity calculations.

The physics surrounding the interactions of gamma-rays with matter are also evident
in Figure 11 when examining the dissimilarity values for the various isotopes. Isotopes such
as 10Pd and '%Cd have very low-energy spectral features that are only slightly distorted
for the low-Z shielding but return high dissimilarity values when the AN is increased to 20.
Conversely, isotopes like Y and 134Cs, which have high-energy spectral features, return
lower dissimilarity values due to the shielding, which corroborates with intuition.
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Figure 11. Dissimilarity values for the configurations with varying shielding. The blue circles
represent the dissimilarity values for the reference configuration, and the orange markers are all of
the configurations under comparison. The different markers denote the various configurations.

Similar to the results on the varying standoff distances, the F1-scores decreased as the
dissimilarity increased. As observed in Figure 12, 18 isotopes returned Fl-scores greater
than 0.75 for at least one algorithm across all configurations, including 241 Am, 20784, 57Co,
6OCO, 51CI‘, 134CS, 137CS, 181_7, 1231’ 11111,1, 19211., 177Lu, 54MI‘1, 99MO, 22Na, 103Pd, 99mTC, and 88Y.
However, certain isotopes exhibited significant challenges in classification. For instance,
1334, 109Cd, 152Ey, and 7°Se identifications were drastically diminished in the presence of
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iron shielding. Generally, the RF and XGB classifiers returned higher F1-scores despite the
increasing dissimilarity.
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Figure 12. Fl-scores for the 26 isotopes under varying shielding configurations. The different marker
shapes represent the various configurations for the testing datasets, and the marker colors denote the
algorithms. The asterisk indicates the reference configuration. A dotted line at F1 = 0.75 was included
as a visual reference for the performance.
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While the predominant influence of the increased standoff distance increased the sta-
tistical uncertainty, little changed about the underlying spectral shape. With the variations
in the shielding configurations, there are changes to the underlying spectral shape and an
increase in statistical uncertainties due to the shielding. The F1-scores and dissimilarity
values were averaged over all isotopes and reported in Figure 13. This figure shows that
the RF and XGB classifiers experience the least degradation in their F1-scores and are the
top performers. The MLP classifier, however, returns the lowest F1-scores for the simulated
configurations and scores below 0.75 for the measured configurations, suggesting the
model’s difficulty generalizing to various shielding scenarios.
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Figure 13. Averaged Fl-scores and dissimilarity values of the 26 isotopes under varying shielding
configurations. The different marker shapes represent the various configurations for the testing
datasets, and the marker colors denote the algorithms. The reference configuration is denoted by the
asterisks. A dotted line at F1 = 0.75 was included as a visual reference for the performance.

3.4. Results for Varying Background Configurations

Varying the location of the background measurement can influence the relative pro-
portions of naturally occurring terrestrial and cosmic radioactive constituents in a spectral
response. As was described in the methodology, several different geographic locations
were leveraged for the testing datasets, resembling Albuquerque, NM; Washington, DC;
and Pittsburgh, PA. An example of a background seed, S(p), from the reference configura-
tion is compared to a background sample, x(g), resembling Washington, DC, in Figure 14.
From this figure, it is challenging to identify discrepancies between the underlying spectral
shapes due to the statistical noise of the comparison sample, x(g).
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Figure 14. Visual comparison of the background (BG) seed S(p) where p is the reference configuration
and a BG sample x(g) where g is the configuration with a background resembling Washington,
DC, USA.

As observed in Figure 15, there is very little dissimilarity for the synthesized data with
the varying background configurations, as there was no change in the spectral shapes of
the non-background sources. As mentioned in the analysis of Figure 14, discrepancies exist
between the underlying spectral shapes of the backgrounds for the various geographical lo-
cations. However, these discrepancies are not prominently manifested due to the statistical
fluctuations, thus returning relatively low dissimilarity values.
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Figure 15. Dissimilarity values for the configurations with varying backgrounds. The blue circles
represent the dissimilarity values for the reference configuration, and the orange markers are all of
the configurations under comparison. The different markers denote the different configurations. The

asterisk indicates the reference configuration.

The lack of relatively large variations in the dissimilarity values for the sources and
background leads to relatively consistent predictive performance, as observed in Figures 16
and 17. All of the simulated configurations returned F1-scores above 0.75 across the
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four algorithms. The MLP and XGB classifiers were consistently the top performers,
followed closely by the RF and Ridge classifiers. These results suggest that changes in the
background may have less of an influence on ML-based isotope identification than some
other measurement parameters, such as shielding and standoff distance.
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Figure 16. F1-scores and dissimilarity values of the 26 isotopes under varying background configura-
tions. The different marker shapes represent the various configurations for the testing datasets, and
the marker colors denote the algorithms. The reference configuration is denoted by the asterisk. A
dotted line at F1 = 0.75 was included as a visual reference for the performance.
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Figure 17. Averaged F1-scores and dissimilarity values averaged over all isotopes for each algorithm
and shielding configuration. The different marker shapes represent the different configurations for the
testing datasets, and the marker colors denote the algorithms. The reference configuration is denoted
by the asterisk. A dotted line at F1 = 0.75 was included as a visual reference for the performance.

3.5. Results for Measured Configurations

Domain shifts were incurred by evaluating the ML classifiers on measured data, given
that they were trained on synthetic data. Generating simulated spectral data that resembles
experimentally acquired data can be very tedious and illusive endeavor. Additionally, there
may be nuclear security applications where the time and a priori information necessary
to construct such a representative model may not be practical, thus necessitating the
employment of an imperfect model. Figure 18 depicts such a scenario where the simulated
data represent the reference configuration, and the measured data are also intended to
resemble the reference configuration, as there is a 10 cm standoff distance, with no shielding.
It should be noted that while the measured configurations closely resemble those being
simulated, there are discrepancies between the source activities, thus influencing the overall
statistics in the spectra and their resulting comparisons.

While Figure 18 highlights an individual spectral comparison, Figure 19 returns the
dissimilarity values determined for the four measured sources (133Ba, ®YCo, 1%7Cs, 152Eu)
across the four measured configurations. These values indicate large spectral differences
between the training and testing configurations.

Figures 20 and 21 return the F1-scores and dissimilarity values for the four measured
sources and their averages, respectively. Because of the differences in the data structures
between the measured and synthetic data, robust analysis between Sections 3.1-3.4 and
this section is inappropriate. However, the same general trends can be observed, such that
as the dissimilarity increases, the F1-score decreases. Occasionally, a model will return an
excellent performance for a selected isotope in a given configuration (i.e., Ridge classifier,
0Co source, and lead-pig configuration) and other times the opposite (i.e., RF classifier,
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133Ba source, and concrete configuration). Such spurious results warrant the need to collect
and assess more experimental data in future studies.
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Figure 18. Visual comparison of the 13’Cs seed, S(p), where p is the reference configuration and a
137Cs sample, x(q), where g is the measured configuration with a standoff distance of 10 cm. Counts
with energies above the 137Cs photopeak are unlikely to be attributed to pile-up; rather, statistical un-
certainties inherent in background subtraction were only employed for the dissimilarity calculations.
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Figure 19. Dissimilarity values for the configurations with measured data. The blue circles repre-
sent the dissimilarity values for the reference configuration, and the orange markers are all of the
configurations under comparison. The different markers denote the various configurations.
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Figure 20. F1-scores and dissimilarity values for the four measured sources and their corresponding
configurations. The different marker shapes represent the configurations for the testing datasets, and
the marker colors denotes the algorithm. A dotted line at F1 = 0.75 was included as a visual reference
for the performance.
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Figure 21. Averaged Fl-scores and dissimilarity values for the four measured sources and their
corresponding configurations. The different marker shapes represent the configurations for the
testing datasets, and the marker colors denote the algorithm. A dotted line at F1 = 0.75 was included
as a visual reference for the performance.
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3.6. Algorithm Performance Comparisons

The previous results assessed the predictive performance of the four algorithms
with varying standoff distances, shielding, and backgrounds. These results identified the
RF and XGB approaches as consistently returning the best Fl-scores across the selected
configurations. This discussion summarizes the findings from the previous section by
providing a statistical analysis of the prediction results. More specifically, the F1-scores of
the various models and configurations were leveraged with Wilcoxon signed-rank tests
to assess the statistical significance in the difference in the prediction performances of the
models. The Wilcoxon test was selected as it was observed that the differences in the mean
F1-scores are non-normally distributed [35]. These findings provide insight into which of
the four models is more adaptable to handling domain shifts.

For the Wilcoxon test, the null hypothesis is that there is no difference in the median
Fl-scores when comparing the two models. To reject the null hypothesis is to say there is a
statistical difference in the predictive performance of the models. Values of 0.955, 0.99, and
0.997 were leveraged as confidence intervals in rejecting the null hypothesis.

The results of the Wilcoxon signed-rank tests are partitioned into the following
three subsections: Section 3.6.1—analysis of the results from simulated configurations,
Section 3.6.2—analysis of the results from both measured and simulated configurations but
only for the four measured sources, and Section 3.6.3—analysis of the results for the mea-
sured configurations. The discussion was split in this manner to ensure fair and accurate
assessments of the results of the models. Each subsection consists of a boxplot and table of
the respective F1-scores, followed by the results of the Wilcoxon tests.

3.6.1. Analysis of the Results from Simulated Configurations (All Sources)

Figure 22 and Table 5 display the average F1-scores across the 26 sources analyzed in
this study for the eight simulated configurations. These results show that the Wilcoxon
tests were performed as observed in Table 6. In terms of interpreting Table 6 and the label
“Algorithm1 vs. Algorthim2”, statistics with a greater magnitude represent significant
differences among the median F1-scores. Statistics that are relatively small denote that
there is less of a significant difference between the median F1-scores of Algorithm1 and
Algorithm?. These results suggest 99.0% confidence that there is a significance difference
between the RF vs. Ridge and Ridge vs. XGB results. The other algorithmic comparisons
failed to reject the null hypothesis. From a practical perspective, these findings provide
statistical evidence that the RF and XGB algorithms implemented in this study are more
robust to domain shifts than the Ridge classifier.

Table 5. Averaged F1-scores (over 26 sources) for the eight simulated configurations.

Configuration MLP RF Ridge XGB

Reference configuration 0.995 0.979 0.837 0.995
Standoff: 50 cm 0.477 0.780 0.202 0.763

Standoff: 100 cm 0.312 0.351 0.012 0.434
Shielding—AD: 5 gm/ cm?, AN: 6 0.598 0.925 0.670 0.905
Shielding—AD: 5 gm/ cm?, AN: 20 0.480 0.752 0.658 0.737
Shielding—AD: 10 gm/cm?, AN: 20 0.423 0.716 0.546 0.693
Background—Washington, DC, USA 0.995 0.979 0.837 0.995

Background—Pittsburgh, PA, USA 0.995 0.979 0.837 0.995
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Table 6. Wilcoxon signed-rank test results from Table 5.

Algorithm1 MLP vs. MLP vs. MLP vs. RF vs. RF vs. Ridge vs.
Algorithm2 RF Ridge XGB Ridge XGB XGB
Statistic 6.0 9.0 6.0 0.0 17.0 0.0
p-Value 0.109375 0.25 0.109375 0.007813 0.945313 0.007813
Reject null at 95.5% confidence? No No No Yes No Yes
Reject null at 99.0% confidence? No No No Yes No Yes
Reject null at 99.7% confidence? No No No No No No
1.0
[ ]
-
0.8 1
[
.
L 0.6 o
= °
o
%
=
0.4 1
- @
0.2 1 ®
0.0 I I | I
MLP RF Ridge XGB

Figure 22. The markers represent Fl-scores averaged over all 26 sources at the eight simulated
configurations for their respective algorithms. The box plots depict the mean values (center line),
interquartile range (box), and min/max values (whiskers).

3.6.2. Analysis of the Results from Measured and Simulated Configurations (Four Sources)

Figure 23 and Table 7 display the average F1-scores across the measured sources (13*Ba,
0Co, 137Cs, 152Eu) analyzed in this study for all twelve configurations. The Wilcoxon tests
were performed as observed in Table 8. These results indicate that there is 99.7% confidence
that there is a significant difference between the RF and Ridge, RF and XGB, and Ridge and
XGB results. Additionally, there is 99.0% confidence that there is a significant difference
between the MLP and. Ridge results. This statistical analysis reveals that the XGB algorithm
significantly outperformed the other algorithms in this study with confidence levels of
95.5% (MLP), 99.7% (RF), and 99.7% (Ridge) across the four measured sources.
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Figure 23. The markers represent F1-scores averaged over the four measured sources (133Ba, 0Co,
137Cs, 152Eu) for all twelve configurations for their respective algorithms. The box plots depict the
mean values (center line), interquartile range (box), and min/max values (whiskers).

Table 7. Averaged F1-scores for the four measured sources (133Ba, ®0Co, 137Cs, 152Ey) for the twelve
measured and simulated configurations.

Configuration MLP RF Ridge XGB

Reference configuration 0.995 0.978 0.836 0.994
Standoff: 50 cm 0.387 0.681 0.267 0.733

Standoff: 100 cm 0.264 0.342 0.070 0.401
Shielding—AD: 5 gm/cm?, AN: 6 0.783 0.952 0.639 0.976
Shielding—AD: 5 gm/cm?, AN: 20 0.503 0.533 0.619 0.634
Shielding—AD: 10 gm/ cm?, AN: 20 0.427 0.533 0.499 0.627
Background—Washington DC, USA 0.994 0.978 0.838 0.994
Background—Pittsburgh, PA, USA 0.995 0.979 0.839 0.994
Standoff—10 cm (measured) 0.791 0.962 0.680 0.946
Standoff—50 cm (measured) 0.696 0.554 0.167 0.699
Shielding—Concrete (measured) 0.700 0.590 0.151 0.716
Shielding—Lead pig (measured) 0.669 0.626 0.403 0.666

Table 8. Wilcoxon signed-rank test results from Table 7.

Algorithm1 MLP vs. MLP vs. MLP vs. RF vs. RF vs. Ridge vs.
Algorithm2 RF Ridge XGB Ridge XGB XGB
Statistic 28.0 4.0 10.0 2.0 2.0 0.0
p-Value 0.423828 0.003418 0.020996 0.001465 0.001465 0.000488
Reject null at 95.5% confidence? No Yes Yes Yes Yes Yes
Reject null at 99.0% confidence? No Yes No Yes Yes Yes

Reject null at 99.7% confidence? No No No Yes Yes Yes
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3.6.3. Analysis of the Results from Measured Configurations (Four Sources)

Figure 24 and Table 9 display the average F1-scores across the measured sources (1**Ba,
0Co, 137Cs, 12Eu) analyzed in this study for all twelve configurations. The Wilcoxon
signed-rank tests were performed as observed in Table 10. The Wilcoxon test results reveal
that all algorithm comparisons failed to reject the null hypothesis, suggesting the need for
the collection of additional measured configurations.
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Figure 24. The markers represent F1-scores averaged over the four measured sources (}33Ba, ®°Co,
137Cs, 152Ey) at the four measured configurations for their respective algorithms. The box plots depict
the mean values (center line), interquartile range (box), and min/max values (whiskers).
Table 9. Averaged F1-scores (over the four measured sources (133Ba, ©0Co, 137Cs, 152Eu) for the four
measured configurations.
Configuration MLP RF Ridge XGB
Standoff—10 cm (measured) 0.791 0.962 0.680 0.946
Standoff—50 cm (measured) 0.696 0.554 0.167 0.699
Shielding—Concrete (measured) 0.700 0.590 0.151 0.716
Shielding—Lead pig (measured) 0.669 0.626 0.403 0.666
Table 10. Wilcoxon signed-rank test results from Table 9.
Algorithm1 MLP vs. MLP vs. MLP vs. RF vs. RF vs. Ridge vs.
Algorithm2 RF Ridge XGB Ridge XGB XGB
Statistic 4.0 0.0 1.0 0.0 1.0 0.0
p-Value 0.875 0.125 0.25 0.125 0.25 0.125
Reject null at 95.5% confidence? No No No No No No
Reject null at 99.0% confidence? No No No No No No
Reject null at 99.7% confidence? No No No No No No
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4. Conclusions

Developing accurate and robust ML-based isotope identification capabilities is vital
for various nuclear security applications. The accuracy of an ML approach largely depends
on how well the training data resemble the testing data. Acquiring training data that closely
resemble testing data poses several challenges. For instance, the measurement of interest
may be in a scenario or configuration that is restricted or resource-intensive, making it
difficult to collect relevant measured data for training. Additionally, synthetic spectral data
do not always perfectly match measured configurations, and variations in measurement
parameters may exist between the collected data of interest and the parameters used to
synthesize the training data due to operational constraints.

While many studies have previously investigated domain adaptation within an isotope
identification framework, this study introduces a methodology to quantify the similarity
between the training and testing spectra. This technique contextualizes changes in the
underlying spectral shape with statistical noise to better communicate the degree of spectral
dissimilarity between the training and testing configurations. This dissimilarity was then
related to the prediction performances of the four different classifiers to quantify the
discussion on algorithm generalizability. Wilcoxon signed-rank tests revealed that the
OVR-wrapped MLP, RE, and XGB algorithms generally returned significantly different F1-
scores from the Ridge classifier with 95.5% confidence. Additionally, the XGB significantly
outperformed the other algorithms with confidence levels of 95.5% (MLP), and 99.7% (RF
and Ridge) for the 13384, 00Co, 137Cs, and 192Eu sources.

The findings from this work are significant as they outline techniques to promote
the development of robust ML-based approaches for isotope identification, a capability
vital for various security applications. The novelty of this work is the introduction of a
methodology whereby discrepancies between training and testing datasets can be quan-
tified. Additionally, this study evaluates the predictive behavior of several algorithms in
the context of the training—testing similarity, which can be beneficial for other developers
who may anticipate domain shifts in their spectral analysis. Future studies are anticipated
to leverage this work’s methodological developments and results to evaluate the spectral
dissimilarity on a greater range of measurement parameters and construct robust analytical
and ML tools.
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