External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons
Abstract
:1. Introduction
2. Transport of Non-Equilibrium Neutrons from Reactor Core to the UCN Source Moderator
2.1. UCN Source at NC State University PULSTAR Reactor
2.2. Description of UCN Source Beam Port Components
3. Foil Activation Method for Neutron Flux Characterization
Foil Activation Theory
4. Experimental Results
4.1. Description of Activation Measurements Using Test Tank
4.2. Description of Activation Measurements Using the Real UCN Source Tank
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ban, G.; Chen, J.; Lefort, T.; Naviliat-Cuncic, O.; Saenz-Arevalo, W.; Chiu, P.J.; Clément, B.; Larue, P.; Pignol, G.; Roccia, S.; et al. Search for neutron-to-hidden-neutron oscillations in an ultracold neutron beam. Phys. Rev. Lett. 2023, 131, 191801. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, O.; Piegsa, F.M.; Ivanov, S.N. Superthermal source of ultracold neutrons for fundamental physics experiments. Phys. Rev. Lett. 2011, 107, 134801. [Google Scholar] [CrossRef] [PubMed]
- Golub, R.; Richardson, D.; Lamoreaux, S.K. Ultra-Cold Neutrons; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Steyerl, A. Ultracold Neutrons; World Scientific: Singapore, 2020. [Google Scholar]
- Koch, B.; Muñoz, E.; Santoni, A. Ultracold neutrons in the low curvature limit: Remarks on the post-Newtonian effects. Phys. Rev. D 2024, 109, 064085. [Google Scholar] [CrossRef]
- Michaudon, A. Use of Ultracold Neutrons for Condensed-Matter Studies. 1997. Available online: https://www.osti.gov/biblio/489635 (accessed on 26 July 2024).
- Ignatovich, V.K.; Pontecorvo, G. The Physics of Ultracold Neutrons; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Altarev, I. Universal liquid-hydrogen source of polarized cold and ultracold neutrons at the VVR-M reactor of the Leningrad Institute of Nuclear Physics. Pis’ma Zh. Eksp. Teor. Fiz. 1986, 44, 269–272. [Google Scholar]
- Steyerl, A.; Nagel, H.; Schreiber, F.X.; Steinhauser, K.A.; Gähler, R.; Gläser, W.; Ageron, P.; Astruc, J.; Drexel, W.; Gervais, G.; et al. A new source of cold and ultracold neutrons. Phys. Lett. A 1986, 116, 347–352. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Liouville’s Theorem (Hamiltonian). Available online: https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian) (accessed on 26 July 2024).
- Golub, R.; Ageron, P.; Mampe, W.; McLintock, P. A ‘super-thermal’ source for ultra-cold neutrons. In Neutron Capture Gamma-Ray Spectroscopy; Springer: Boston, MA, USA, 1979; pp. 615–617. [Google Scholar] [CrossRef]
- Karch, J.; Sobolev, Y.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 2014, 50, 78. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Fomin, A.K.; Kharitonov, A.G.; Lyamkin, V.A.; Prudnikov, D.V.; Ivanov, S.A.; Erykalov, A.N.; Onegin, M.S.; Gridnev, K.A. High-density ultracold neutron sources for the WWR-M and PIK reactors. Crystallogr. Rep. 2016, 61, 144–148. [Google Scholar] [CrossRef]
- Serebrov, A.; Mityukhlyaev, V.; Zakharov, A.; Kharitonov, A.; Shustov, V.; Kuz’minov, V.; Lasakov, M.; Tal’daev, R.; Aldushchenkov, A.; Varlamov, V.; et al. Studies of a solid-deuterium source for ultra-cold neutrons. Nucl. Instr. Meth. Phys. Res. A 2000, 440, 658–665. [Google Scholar] [CrossRef]
- Trinks, U.; Hartmann, F.; Paul, S.; Schott, W. Concepts of UCN sources for the FRM-II. Nucl. Instr. Meth. Phys. Res. A 2000, 440, 666–673. [Google Scholar] [CrossRef]
- Frei, A.; Sobolev, Y.; Altarev, I.; Eberhardt, K.; Gschrey, A.; Gutsmiedl, E.; Hackl, R.; Hampel, G.; Hartmann, F.J.; Heil, W.; et al. First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 2007, 34, 119–127. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Mityukhlyaev, V.A. Experimental study of a solid-deuterium source of ultracold neutrons. JETP Lett. 1995, 62, 785–790. [Google Scholar]
- Serebrov, A.; Lyamkin, V. Development of UCN sources at PNPI. J. Neutron Res. 2022, 24, 145–166. [Google Scholar] [CrossRef]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, J.; Durkee, J. Initial MCNP6 Release Overview. Nucl. Technol. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Hawari, A.I. North Carolina State University PULSTAR Reactor. In Encyclopedia of Nuclear Energy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Wehring, B.; Young, A. Ultracold Neutron Source at the North Carolina State Research Reactor. Trans. Am. Nucl. Soc. 2001, 83, 120. [Google Scholar]
- Korobkina, E.; Wehring, B.; Hawari, A.; Young, A.; Huffman, P.; Golub, R.; Xu, Y.; Palmquist, G. An ultracold neutron source at the NC State University PULSTAR reactor. Nucl. Instr. Meth. Phys. Res. A 2007, 579, 530–533. [Google Scholar] [CrossRef]
- Korobkina, E.; Medlin, G.; Wehring, B.; Hawari, A.I.; Huffman, P.R.; Young, A.R.; Beaumont, B.; Palmquist, G. Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing. Nucl. Instr. Meth. Phys. Res. A 2014, 767, 169–175. [Google Scholar] [CrossRef]
- Yu, Z.C.; Malik, S.S.; Golub, R. A thin film source of ultra-cold neutrons. Z. Für Phys. B Condens. Matter 1986, 62, 137–142. [Google Scholar] [CrossRef]
- Atchison, F.; Blau, B.; Bodek, K.; Van den Brandt, B.; Bryś, T.; Daum, M.; Fierlinger, P.; Frei, A.; Geltenbort, P.; Hautle, P.; et al. Cold neutron energy dependent production of ultracold neutrons in solid deuterium. Phys. Rev. Lett. 2007, 99, 262502. [Google Scholar] [CrossRef] [PubMed]
- Frei, A.; Gutsmiedl, E.; Morkel, C.; Müller, A.; Paul, S.; Rols, S.; Schober, H.; Unruh, T. Understanding of ultra-cold–neutron production in solid deuterium. Europhys. Lett. 2011, 92, 62001. [Google Scholar] [CrossRef]
- Medlin, G. Characterization of the PULSTAR Ultracold Neutron Source. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2017. [Google Scholar]
- Xu, Y. Characterization of Solid Deuterium Ultracold Neutron Source Production and UCN Transport. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2006. [Google Scholar]
- Westcott, C.H.; Walker, W.H.; Alexander, T.K. Effective Cross Sections and Cadmium Ratios for the Neutron Spectra of Thermal Reactors. 1959. Available online: https://www.osti.gov/biblio/4279663 (accessed on 26 July 2024).
- ASTM E262; Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques. Standard, ASTM International: West Conshohocken, PA, USA, 2017.
- Palmquist, G. Design and Construction of the Ultracold Neutron Source at the NC State PULSTAR Research Reactor. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2014. [Google Scholar]
- Steyerl, A. A “neutron turbine” as an efficient source of ultracold neutrons. Nucl. Instr. Meth. 1975, 125, 461. [Google Scholar] [CrossRef]
Configuration | 1–2.5 cm | 2–7.6 cm | 3–12.7 cm | 4–17.8 cm | 5–22.9 cm | 6–28.0 cm | 7–33.0 cm | |
---|---|---|---|---|---|---|---|---|
Configuration A | Bare | 1.94 × 10−11 | 1.70 × 10−11 | 1.45 × 10−11 | 1.21 × 10−11 | 9.72 × 10−12 | 7.54 × 10−12 | 5.36 × 10−12 |
Cd | - | 1.24 × 10−12 | - | 5.63 × 10−12 | - | 2.83 × 10−13 | - | |
Cd Ratio | - | 13.66 | - | 21.54 | - | 26.66 | - | |
Eff. (b) | - | 74.69 | - | 75.75 | - | 76.82 | - | |
Configuration B | Bare | 1.10 × 10−10 | 9.73 × 10−11 | 8.43 × 10−11 | 7.05 × 10−11 | 5.67 × 10−11 | 4.44 × 10−11 | 3.22 × 10−11 |
Cd | - | 9.98 × 10−12 | - | 4.01 × 10−12 | - | 1.20 × 10−12 | - | |
Cd Ratio | - | 9.75 | - | 17.58 | - | 37.04 | - | |
Eff. (b) | - | 73.35 | - | 74.84 | - | 76.55 | - | |
Configuration C | Bare | 5.74 × 10−11 | 5.03 × 10−11 | 4.32 × 10−11 | 4.01 × 10−11 | 3.70 × 10−11 | 3.58 × 10−11 | 3.46 × 10−11 |
Cd | - | 6.18 × 10−12 | - | 4.08 × 10−12 | - | 3.37 × 10−12 | - | |
Cd Ratio | - | 8.14 | - | 9.83 | - | 10.62 | - | |
Eff. (b) | - | ≈72 | - | ≈72 | - | ≈72 | - | |
Real Tank | Bare | - | - | - | - | 3.88 × 10−11 | - | - |
Cd | - | - | - | - | 4.76 × 10−12 | - | - | |
Cd Ratio | - | - | - | - | 8.15 | - | - | |
Eff. (b) | - | - | - | - | ≈72 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medlin, G.; Korobkina, E.; Teander, C.; Wehring, B.; Sharapov, E.; Hawari, A.I.; Huffman, P.; Young, A.R.; Palmquist, G.; Morano, M.; et al. External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons. J. Nucl. Eng. 2024, 5, 486-499. https://doi.org/10.3390/jne5040030
Medlin G, Korobkina E, Teander C, Wehring B, Sharapov E, Hawari AI, Huffman P, Young AR, Palmquist G, Morano M, et al. External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons. Journal of Nuclear Engineering. 2024; 5(4):486-499. https://doi.org/10.3390/jne5040030
Chicago/Turabian StyleMedlin, Graham, Ekaterina Korobkina, Cole Teander, Bernard Wehring, Eduard Sharapov, Ayman I. Hawari, Paul Huffman, Albert R. Young, Grant Palmquist, Matthew Morano, and et al. 2024. "External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons" Journal of Nuclear Engineering 5, no. 4: 486-499. https://doi.org/10.3390/jne5040030
APA StyleMedlin, G., Korobkina, E., Teander, C., Wehring, B., Sharapov, E., Hawari, A. I., Huffman, P., Young, A. R., Palmquist, G., Morano, M., Hickman, C., Rao, T., & Golub, R. (2024). External Moderation of Reactor Core Neutrons for Optimized Production of Ultra-Cold Neutrons. Journal of Nuclear Engineering, 5(4), 486-499. https://doi.org/10.3390/jne5040030