Peritoneal Immunity in Liver Disease
Abstract
:1. Introduction
2. Peritoneum in Healthy and Infectious State
3. Peritoneal Innate Immunity
3.1. Macrophages
3.2. Dendritic Cells
3.3. Neutrophils
3.4. Myeloid-Derived Suppressor Cells
3.5. NK Cells
4. Peritoneal Adaptive Immunity
4.1. Effector T Cells
4.2. T Regulatory Cells
4.3. Gamma-Delta T Cells
4.4. MAIT Cells
4.5. Natural Killer T Cells
4.6. B Cells
5. Peritoneal Soluble Immune Factors
6. The Impact of Bacterial Translocation on Peritoneal Immunity
7. Therapeutic Approaches to Improve Peritoneal Immunity in Chronic Liver Disease
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver; Angeli, P.; Bernardi, M.; Villanueva, C.; Francoz, C.; Mookerjee, R.P.; Trebicka, J.; Krag, A.; Laleman, W.; Gines, P. EASL Clinical Practice Guidelines for the Management of Patients with Decompensated Cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.T.; Kim, W.R.; Poterucha, J.J.; Kamath, P.S. Spontaneous Bacterial Peritonitis in Asymptomatic Outpatients with Cirrhotic Ascites. Hepatology 2003, 37, 897–901. [Google Scholar] [CrossRef]
- Fernández, J.; Acevedo, J.; Wiest, R.; Gustot, T.; Amoros, A.; Deulofeu, C.; Reverter, E.; Martínez, J.; Saliba, F.; Jalan, R.; et al. Bacterial and Fungal Infections in Acute-on-Chronic Liver Failure: Prevalence, Characteristics and Impact on Prognosis. Gut 2018, 67, 1870. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Martin-Mateos, R.; der Merwe, S.V.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-Associated Immune Dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alcaraz, A.J.; Martínez-Banaclocha, H.; Marín-Sánchez, P.; Carmona-Martínez, V.; Iniesta-Albadalejo, M.A.; Tristán-Manzano, M.; Tapia-Abellán, A.; García-Peñarrubia, P.; Machado-Linde, F.; Pelegrín, P.; et al. Isolation of Functional Mature Peritoneal Macrophages from Healthy Humans. Immunol. Cell Biol. 2020, 98, 114–126. [Google Scholar] [CrossRef]
- Kubicka, U.; Olszewski, W.L.; Tarnowski, W.; Bielecki, K.; Ziółkowska, A.; Wierzbicki, Z. Normal Human Immune Peritoneal Cells: Subpopulations and Functional Characteristics. Scand. J. Immunol. 1996, 44, 157–163. [Google Scholar] [CrossRef]
- Mier-Cabrera, J.; Jiménez-Zamudio, L.; García-Latorre, E.; Cruz-Orozco, O.; Hernández-Guerrero, C. Quantitative and Qualitative Peritoneal Immune Profiles, T-cell Apoptosis and Oxidative Stress-associated Characteristics in Women with Minimal and Mild Endometriosis. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 6–16. [Google Scholar] [CrossRef]
- García-Peñarrubia, P.; Ruiz-Alcaraz, A.J.; Ruiz-Ballester, M.; Ramírez-Pávez, T.N.; Martínez-Esparza, M. Recent Insights into the Characteristics and Role of Peritoneal Macrophages from Ascites of Cirrhotic Patients. World J. Gastroenterol. 2021, 27, 7014–7024. [Google Scholar] [CrossRef]
- Català, C.; Andrés, M.V.; Casadó-Llombart, S.; Leyton-Pereira, A.; Carrillo-Serradell, L.; Isamat, M.; Lozano, F. Innate Immune Response to Peritoneal Bacterial Infection. Int. Rev. Cell Mol. Biol. 2022, 371, 43–61. [Google Scholar] [CrossRef]
- Ghosn, E.E.B.; Cassado, A.A.; Govoni, G.R.; Fukuhara, T.; Yang, Y.; Monack, D.M.; Bortoluci, K.R.; Almeida, S.R.; Herzenberg, L.A.; Herzenberg, L.A. Two Physically, Functionally, and Developmentally Distinct Peritoneal Macrophage Subsets. Proc. Natl. Acad. Sci. USA 2010, 107, 2568–2573. [Google Scholar] [CrossRef]
- Bain, C.C.; Hawley, C.A.; Garner, H.; Scott, C.L.; Schridde, A.; Steers, N.J.; Mack, M.; Joshi, A.; Guilliams, M.; Mowat, A.M.I.; et al. Long-Lived Self-Renewing Bone Marrow-Derived Macrophages Displace Embryo-Derived Cells to Inhabit Adult Serous Cavities. Nat. Commun. 2016, 7, ncomms11852. [Google Scholar] [CrossRef] [PubMed]
- Bain, C.C.; Gibson, D.A.; Steers, N.J.; Boufea, K.; Louwe, P.A.; Doherty, C.; González-Huici, V.; Gentek, R.; Magalhaes-Pinto, M.; Shaw, T.; et al. Rate of Replenishment and Microenvironment Contribute to the Sexually Dimorphic Phenotype and Function of Peritoneal Macrophages. Sci. Immunol. 2020, 5, eabc4466. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Williams, J.W.; Wang, Y.-T.; Ivanov, S.; Gilfillan, S.; Colonna, M.; Virgin, H.W.; Gautier, E.L.; Randolph, G.J. MHC II+ Resident Peritoneal and Pleural Macrophages Rely on IRF4 for Development from Circulating Monocytes. J. Exp. Med. 2016, 213, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Vega-Pérez, A.; Villarrubia, L.H.; Godio, C.; Gutiérrez-González, A.; Feo-Lucas, L.; Ferriz, M.; Martínez-Puente, N.; Alcaín, J.; Mora, A.; Sabio, G.; et al. Resident Macrophage-Dependent Immune Cell Scaffolds Drive Anti-Bacterial Defense in the Peritoneal Cavity. Immunity 2021, 54, 2578–2594.e5. [Google Scholar] [CrossRef] [PubMed]
- Jorch, S.K.; Surewaard, B.G.J.; Hossain, M.; Peiseler, M.; Deppermann, C.; Deng, J.; Bogoslowski, A.; van der Wal, F.; Omri, A.; Hickey, M.J.; et al. Peritoneal GATA6+ Macrophages Function as a Portal for Staphylococcus Aureus Dissemination. J. Clin. Investig. 2019, 129, 4643–4656. [Google Scholar] [CrossRef]
- Ruiz-Alcaraz, A.J.; Carmona-Martínez, V.; Tristán-Manzano, M.; Machado-Linde, F.; Sánchez-Ferrer, M.L.; García-Peñarrubia, P.; Martínez-Esparza, M. Characterization of Human Peritoneal Monocyte/Macrophage Subsets in Homeostasis: Phenotype, GATA6, Phagocytic/Oxidative Activities and Cytokines Expression. Sci. Rep. 2018, 8, 12794. [Google Scholar] [CrossRef]
- Chow, A.; Schad, S.; Green, M.D.; Hellmann, M.D.; Allaj, V.; Ceglia, N.; Zago, G.; Shah, N.S.; Sharma, S.K.; Mattar, M.; et al. Tim-4+ Cavity-Resident Macrophages Impair Anti-Tumor CD8+ T Cell Immunity. Cancer Cell 2021, 39, 973–988.e9. [Google Scholar] [CrossRef]
- Ruiz-Alcaraz, A.J.; Tapia-Abellán, A.; Fernández-Fernández, M.D.; Tristán-Manzano, M.; Hernández-Caselles, T.; Sánchez-Velasco, E.; Miras-López, M.; Martínez-Esparza, M.; García-Peñarrubia, P. A Novel CD14high CD16high Subset of Peritoneal Macrophages from Cirrhotic Patients Is Associated to an Increased Response to LPS. Mol. Immunol. 2016, 72, 28–36. [Google Scholar] [CrossRef]
- Ruiz-Alcaraz, A.J.; Martínez-Esparza, M.; Caño, R.; Hernández-Caselles, T.; Recarti, C.; Llanos, L.; Zapater, P.; Tapia-Abellán, A.; Tapia, A.; Martín-Orozco, E.; et al. Peritoneal Macrophage Priming in Cirrhosis Is Related to ERK Phosphorylation and IL-6 Secretion. Eur. J. Clin. Investig. 2011, 41, 8–15. [Google Scholar] [CrossRef]
- Tapia-Abellán, A.; Martínez-Esparza, M.; Ruiz-Alcaraz, A.J.; Hernández-Caselles, T.; Martínez-Pascual, C.; Miras-López, M.; Such, J.; Francés, R.; García-Peñarrubia, P. The Peritoneal Macrophage Inflammatory Profile in Cirrhosis Depends on the Alcoholic or Hepatitis C Viral Etiology and Is Related to ERK Phosphorylation. BMC Immunol. 2012, 13, 42. [Google Scholar] [CrossRef]
- Ahmed, A.M.M.; Bomford, A.; Nouri-Aria, K.T.; Davies, T.; Smith, R.; Williams, R. Peritoneal Macrophages from Patients with Cirrhotic Ascites Show Impaired Phagocytosis and Vigorous Respiratory Burst. Results Immunol. 2011, 1, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.M.; Banh, X.; Gadd, V.L.; Wojcik, K.K.; Ariffin, J.K.; Jose, S.; Lukowski, S.; Baillie, G.J.; Sweet, M.J.; Powell, E.E. CRIg-Expressing Peritoneal Macrophages Are Associated with Disease Severity in Patients with Cirrhosis and Ascites. JCI Insight 2016, 1, e86914. [Google Scholar] [CrossRef] [PubMed]
- Stengel, S.; Quickert, S.; Lutz, P.; Ibidapo-Obe, O.; Steube, A.; Köse-Vogel, N.; Yarbakht, M.; Reuken, P.A.; Busch, M.; Brandt, A.; et al. Peritoneal Level of CD206 Associates with Mortality and an Inflammatory Macrophage Phenotype in Patients with Decompensated Cirrhosis and Spontaneous Bacterial Peritonitis. Gastroenterology 2020, 158, 1745–1761. [Google Scholar] [CrossRef] [PubMed]
- Kruger, A.J. Can Macrophages in Cirrhotic Ascites Fluid Predict Clinical Outcome in Spontaneous Bacterial Peritonitis? Gastroenterology 2020, 158, 1540–1543. [Google Scholar] [CrossRef]
- Nieto, J.C.; Sánchez, E.; Romero, C.; Román, E.; Poca, M.; Guarner, C.; Juárez, C.; Soriano, G.; Vidal, S. Impaired Innate Immune Response of Leukocytes from Ascitic Fluid of Patients with Spontaneous Bacterial Peritonitis. J. Leukoc. Biol. 2015, 98, 819–825. [Google Scholar] [CrossRef]
- Reißing, J.; Lutz, P.; Frissen, M.; Ibidapo-Obe, O.; Reuken, P.A.; Wirtz, T.H.; Stengel, S.; Quickert, S.; Rooney, M.; Große, K.; et al. Immunomodulatory Receptor VSIG4 Is Released during Spontaneous Bacterial Peritonitis and Predicts Short-Term Mortality. JHEP Rep. 2021, 4, 100391. [Google Scholar] [CrossRef]
- Barth, M.W.; Hendrzak, J.A.; Melnicoff, M.J.; Morahan, P.S. Review of the Macrophage Disappearance Reaction. J. Leukoc. Biol. 1995, 57, 361–367. [Google Scholar] [CrossRef]
- Lan, F.; Yuan, B.; Liu, T.; Luo, X.; Huang, P.; Liu, Y.; Dai, L.; Yin, H. Interleukin-33 Facilitates Neutrophil Recruitment and Bacterial Clearance in S. Aureus-Caused Peritonitis. Mol. Immunol. 2016, 72, 74–80. [Google Scholar] [CrossRef]
- Engelmann, C.; Becker, C.; Boldt, A.; Herta, T.; Boehlig, A.; Splith, K.; Schmelzle, M.; Mueller, N.; Krohn, S.; Tautenhahn, H.-M.; et al. Ascites’ Neutrophil Function Is Significantly Impaired in Patients with Decompensated Cirrhosis but Can Be Restored by Autologous Plasma Incubation. Sci. Rep. 2016, 6, 37926. [Google Scholar] [CrossRef]
- Agraz-Cibrián, J.M.; Delgado-Rizo, V.; Segura-Ortega, J.E.; Maldonado-Gómez, H.A.; Zambrano-Zaragoza, J.F.; Durán-Avelar, M.d.J.; Vibanco-Perez, N.; Fafutis-Morris, M. Impaired Neutrophil Extracellular Traps and Inflammatory Responses in the Peritoneal Fluid of Patients with Liver Cirrhosis. Scand. J. Immunol. 2018, 88, e12714. [Google Scholar] [CrossRef]
- Lutz, P.; Jeffery, H.C.; Jones, N.; Birtwistle, J.; Kramer, B.; Nattermann, J.; Spengler, U.; Strassburg, C.P.; Adams, D.H.; Oo, Y.H. NK Cells in Ascites from Liver Disease Patients Display a Particular Phenotype and Take Part in Antibacterial Immune Response. Front. Immunol. 2019, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.; Na, H.Y.; Shin, H.S.; Ryu, S.H.; Park, S.; In, H.; Choi, W.; Park, J.S.; Hwang, S.; Chu, M.K.; et al. Global Gene Expression of T Cells Is Differentially Regulated by Peritoneal Dendritic Cell Subsets in an IL-2 Dependent Manner. Front. Immunol. 2021, 12, 648348. [Google Scholar] [CrossRef] [PubMed]
- McCully, M.L.; Chau, T.A.; Luke, P.; Blake, P.G.; Madrenas, J. Characterization of Human Peritoneal Dendritic Cell Precursors and Their Involvement in Peritonitis. Clin. Exp. Immunol. 2005, 139, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Kryczek, I.; Zou, L.; Daniel, B.; Cheng, P.; Mottram, P.; Curiel, T.; Lange, A.; Zou, W. Plasmacytoid Dendritic Cells Induce CD8+ Regulatory T Cells in Human Ovarian Carcinoma. Cancer Res. 2005, 65, 5020–5026. [Google Scholar] [CrossRef]
- Wefers, C.; Boer, T.D.; Yigit, R.; Zusterzeel, P.L.M.; van Altena, A.M.; Massuger, L.F.A.G.; Vries, I.J.M.D. Survival of Ovarian Cancer Patients Is Independent of the Presence of DC and T Cell Subsets in Ascites. Front. Immunol. 2019, 9, 3156. [Google Scholar] [CrossRef]
- Juan, A.C.; Jorge, S.-O.; Vidal, D.-R.; Karla, B.-L.; Mary, F.-M. Alterations in Neutrophil Extracellular Traps Release Is Associated with the Degree of Decompensation of Liver Cirrhosis. Front. Immunol. 2015, 6, 512–517. [Google Scholar] [CrossRef]
- Taylor, N.J.; Vijay, G.K.M.; Abeles, R.D.; Auzinger, G.; Bernal, W.; Ma, Y.; Wendon, J.A.; Shawcross, D.L. The Severity of Circulating Neutrophil Dysfunction in Patients with Cirrhosis Is Associated with 90-day and 1-year Mortality. Aliment. Pharm. Ther. 2014, 40, 705–715. [Google Scholar] [CrossRef]
- Nieto, J.C.; Perea, L.; Soriano, G.; Zamora, C.; Cantó, E.; Medina, A.; Poca, M.; Sanchez, E.; Roman, E.; Julià, G.; et al. Ascitic Fluid Regulates the Local Innate Immune Response of Patients with Cirrhosis. J. Leukoc. Biol. 2018, 104, 833–841. [Google Scholar] [CrossRef]
- Căruntu, F.A.; Benea, L. Spontaneous Bacterial Peritonitis: Pathogenesis, Diagnosis, Treatment. J. Gastrointest. Liver Dis. JGLD 2006, 15, 51–56. [Google Scholar]
- Simbrunner, B.; Röthenbacher, A.; Haslacher, H.; Bauer, D.; Chromy, D.; Bucsics, T.; Schwabl, P.; Paternostro, R.; Scheiner, B.; Trauner, M.; et al. Ascitic Fluid Polymorphic Nuclear Cell Count Impacts on Outcome of Cirrhotic Patients with Ascites. UEG J. 2019, 7, 651–661. [Google Scholar] [CrossRef]
- Saffo, S.; To, U.K.; Santoiemma, P.P.; Laurito, M.; Haque, L.; Rabiee, A.; Verna, E.C.; Angarone, M.P.; Garcia-Tsao, G. Changes in Ascitic Fluid Polymorphonuclear Cell Count After Antibiotics Are Associated with Mortality in Spontaneous Bacterial Peritonitis. Clin. Gastroenterol. Hepatol. 2021, 20, e1201–e1204. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.-H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Emerging Roles of Myeloid Derived Suppressor Cells in Hepatic Inflammation and Fibrosis. World J. Gastrointest. Pathophysiol. 2015, 6, 43. [Google Scholar] [CrossRef]
- Wu, L.; Deng, Z.; Peng, Y.; Han, L.; Liu, J.; Wang, L.; Li, B.; Zhao, J.; Jiao, S.; Wei, H. Ascites-Derived IL-6 and IL-10 Synergistically Expand CD14+HLA-DR-/Low Myeloid-Derived Suppressor Cells in Ovarian Cancer Patients. Oncotarget 2017, 8, 76843–76856. [Google Scholar] [CrossRef] [PubMed]
- Obermajer, N.; Muthuswamy, R.; Odunsi, K.; Edwards, R.P.; Kalinski, P. PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment. Cancer Res. 2011, 71, 7463–7470. [Google Scholar] [CrossRef] [PubMed]
- Weston, C.J.; Zimmermann, H.W.; Adams, D.H. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front. Immunol. 2019, 10, 893. [Google Scholar] [CrossRef]
- Hoechst, B.; Ormandy, L.A.; Ballmaier, M.; Lehner, F.; Krüger, C.; Manns, M.P.; Greten, T.F.; Korangy, F. A New Population of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Induces CD4+CD25+Foxp3+ T Cells. Gastroenterology 2008, 135, 234–243. [Google Scholar] [CrossRef]
- Bernsmeier, C.; Triantafyllou, E.; Brenig, R.; Lebosse, F.J.; Singanayagam, A.; Patel, V.C.; Pop, O.T.; Khamri, W.; Nathwani, R.; Tidswell, R.; et al. CD14+ CD15− HLA-DR− Myeloid-Derived Suppressor Cells Impair Antimicrobial Responses in Patients with Acute-on-Chronic Liver Failure. Gut 2018, 67, 1155. [Google Scholar] [CrossRef]
- Elwan, N.; Salem, M.L.; Kobtan, A.; El-Kalla, F.; Mansour, L.; Yousef, M.; Al-Sabbagh, A.; Zidan, A.-A.A.; Abd-Elsalam, S. High Numbers of Myeloid Derived Suppressor Cells in Peripheral Blood and Ascitic Fluid of Cirrhotic and HCC Patients. Immunol. Investig. 2018, 47, 169–180. [Google Scholar] [CrossRef]
- Gonzaga, R.; Matzinger, P.; Perez-Diez, A. Resident Peritoneal NK Cells. J. Immunol. 2011, 187, 6235–6242. [Google Scholar] [CrossRef]
- Haidl, I.D.; Meghnem, D.; Issekutz, T.B.; Marshall, J.S. Toll-like Receptor 2 Activation Induces C–C Chemokine Receptor 2-dependent Natural Killer Cell Recruitment to the Peritoneum. Immunol. Cell Biol. 2020, 98, 854–867. [Google Scholar] [CrossRef]
- Russ, M.A.; Reith, H.B. The Severity of Infection Induces a Shift in the Type 1/Type 2 T-Helper Cell Balance in Patients with or without Peritonitis. Surg. Infect. 2003, 4, 247–254. [Google Scholar] [CrossRef]
- Enríquez, J.; Klínger, J.; Arturo, J.A.; Delgado, M.; Tobar, C.; Mosquera, M. Peritonitis in Continuous Ambulatory Peritoneal Dialysis: Cytokines in Peritoneal Fluid and Blood. Adv. Perit. Dial. Conf. Perit. Dial. 2002, 18, 177–183. [Google Scholar]
- Niehaus, C.E.; Strunz, B.; Cornillet, M.; Falk, C.S.; Schnieders, A.; Maasoumy, B.; Hardtke, S.; Manns, M.P.; Kraft, A.R.M.; Björkström, N.K.; et al. MAIT Cells Are Enriched and Highly Functional in Ascites of Patients with Decompensated Liver Cirrhosis. Hepatology 2020, 72, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Lebossé, F.; Gudd, C.; Tunc, E.; Singanayagam, A.; Nathwani, R.; Triantafyllou, E.; Pop, O.; Kumar, N.; Mukherjee, S.; Hou, T.Z.; et al. CD8+ T Cells from Patients with Cirrhosis Display a Phenotype That May Contribute to Cirrhosis-Associated Immune Dysfunction. Ebiomedicine 2019, 49, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, R.G.; Vitiello, G.; Gitto, S.; Giudizi, M.G.; Biagiotti, R.; Carraresi, A.; Vizzutti, F.; Laffi, G.; Almerigogna, F. Characterization of Lymphocyte Subsets in Ascitic Fluid and Peripheral Blood of Decompensated Cirrhotic Patients with Chronic Hepatitis C and Alcoholic Liver Disease: A Pivotal Study. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420929587. [Google Scholar] [CrossRef]
- Kiyici, M.; Nak, S.G.; Budak, F.; Gurel, S.; Oral, B.; Dolar, E.; Gulten, M. Lymphocyte Subsets and Cytokines in Ascitic Fluid of Decompensated Cirrhotic Patients with and without Spontaneous Ascites Infection. J. Gastroenterol. Hepatol. 2006, 21, 963–969. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Zhang, Q.; Jia, S.; Qiu, C.; Jin, Z. Overexpression of Ascitic Interleukin-35 Induces CD8+ T Cell Exhaustion in Liver Cirrhotic Patients with Spontaneous Bacterial Peritonitis. Int. Immunopharmacol. 2022, 108, 108729. [Google Scholar] [CrossRef]
- Ibidapo-obe, O.; Stengel, S.; Köse-Vogel, N.; Quickert, S.; Reuken, P.A.; Busch, M.; Bauer, M.; Stallmach, A.; Bruns, T. Mucosal-Associated Invariant T Cells Redistribute to the Peritoneal Cavity During Spontaneous Bacterial Peritonitis and Contribute to Peritoneal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2020, 9, 661–677. [Google Scholar] [CrossRef]
- Pashizeh, F.; Mansouri, R.; Davari-Tanha, F.; Hosseini, R.; Asgari, Z.; Aghaei, H.; Arbastan, F.N.; Rajaei, S. Alterations of CD4+T Cell Subsets in Blood and Peritoneal Fluid in Different Stages of Endometriosis. Int. J. Fertil. Steril. 2020, 14, 201–208. [Google Scholar] [CrossRef]
- Heuer, J.G.; Zhang, T.; Zhao, J.; Ding, C.; Cramer, M.; Justen, K.L.; Vonderfecht, S.L.; Na, S. Adoptive Transfer of In Vitro-Stimulated CD4+CD25+ Regulatory T Cells Increases Bacterial Clearance and Improves Survival in Polymicrobial Sepsis. J. Immunol. 2005, 174, 7141–7146. [Google Scholar] [CrossRef]
- Kühlhorn, F.; Rath, M.; Schmoeckel, K.; Cziupka, K.; Nguyen, H.H.; Hildebrandt, P.; Hünig, T.; Sparwasser, T.; Huehn, J.; Pötschke, C.; et al. Foxp3+ Regulatory T Cells Are Required for Recovery from Severe Sepsis. PLoS ONE 2013, 8, e65109. [Google Scholar] [CrossRef] [PubMed]
- Skuljec, J.; Jirmo, A.C.; Habener, A.; Talbot, S.R.; Pul, R.; Grychtol, R.; Aydin, M.; Kleinschnitz, C.; Happle, C.; Hansen, G. Absence of Regulatory T Cells Causes Phenotypic and Functional Switch in Murine Peritoneal Macrophages. Front. Immunol. 2018, 9, 2458. [Google Scholar] [CrossRef]
- El-Ghani, E.H.A.; Afifi, N.A.; Ibrahim, M.A.; Zahran, A.M.; El-Mokhtar, M.A.; Mekky, M.A.; Hetta, H.F. Regulatory T Cells and IL35 in Chronic Hepatitis C Related Cirrhosis and Hepatocellular Carcinoma. Egypt. J. Immunol. 2021, 28, 46–52. [Google Scholar] [CrossRef]
- Yang, J.; Yi, P.; Wei, L.; Xu, Z.; Chen, Y.; Tang, L.; Li, L. Phenotypes and Clinical Significance of Circulating CD4+CD25+ Regulatory T Cells (Tregs) in Patients with Acute-on-Chronic Liver Failure (ACLF). J. Transl. Med. 2012, 10, 193. [Google Scholar] [CrossRef]
- Bamias, A.; Tsiatas, M.L.; Kafantari, E.; Liakou, C.; Rodolakis, A.; Voulgaris, Z.; Vlahos, G.; Papageorgiou, T.; Tsitsilonis, O.; Bamia, C.; et al. Significant Differences of Lymphocytes Isolated from Ascites of Patients with Ovarian Cancer Compared to Blood and Tumor Lymphocytes. Association of CD3+CD56+ Cells with Platinum Resistance. Gynecol. Oncol. 2007, 106, 75–81. [Google Scholar] [CrossRef]
- Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Stephens, A.N.; Quinn, M.A.; Plebanski, M. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells. Front. Immunol. 2017, 8, 1482. [Google Scholar] [CrossRef]
- Landskron, J.; Helland, Ø.; Torgersen, K.M.; Aandahl, E.M.; Gjertsen, B.T.; Bjørge, L.; Taskén, K. Activated Regulatory and Memory T-Cells Accumulate in Malignant Ascites from Ovarian Carcinoma Patients. Cancer Immunol. Immunother. 2015, 64, 337–347. [Google Scholar] [CrossRef]
- Takada, H.; Hiromatsu, K.; Matsuzaki, G.; Muramori, K.; Nomoto, K. Peritoneal Gamma Delta T Cells Induced by Escherichia Coli Infection in Mice. Correlation between Thy-1 Phenotype and Host Minor Lymphocyte-Stimulating Phenotype. J. Immunol. 1993, 151, 2062–2069. [Google Scholar] [CrossRef] [PubMed]
- Skeen, M.J.; Ziegler, H.K. Induction of Murine Peritoneal Gamma/Delta T Cells and Their Role in Resistance to Bacterial Infection. J. Exp. Med. 1993, 178, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Ferrick, D.A.; Schrenzel, M.D.; Mulvania, T.; Hsieh, B.; Ferlin, W.G.; Lepper, H. Differential Production of Interferon-Gamma and Interleukin-4 in Response to Th1- and Th2-Stimulating Pathogens by Gamma Delta T Cells In Vivo. Nature 1995, 373, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Eberl, M.; Roberts, G.W.; Meuter, S.; Williams, J.D.; Topley, N.; Moser, B. A Rapid Crosstalk of Human Γδ T Cells and Monocytes Drives the Acute Inflammation in Bacterial Infections. PLoS Pathog. 2009, 5, e1000308. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.; Wellbrock, J.; Sturmheit, T.; Oliveira-Ferrer, L.; Ding, Y.; Menzel, S.; Witt, M.; Hell, L.; Schmalfeldt, B.; Bokemeyer, C.; et al. Tissue-Specific Expression of TIGIT, PD-1, TIM-3, and CD39 by Γδ T Cells in Ovarian Cancer. Cells 2022, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Foord, E.; Arruda, L.C.M.; Gaballa, A.; Klynning, C.; Uhlin, M. Characterization of Ascites- and Tumor-Infiltrating Γδ T Cells Reveals Distinct Repertoires and a Beneficial Role in Ovarian Cancer. Sci. Transl. Med. 2021, 13, eabb0192. [Google Scholar] [CrossRef]
- Böttcher, K.; Rombouts, K.; Saffioti, F.; Roccarina, D.; Rosselli, M.; Hall, A.; Luong, T.; Tsochatzis, E.A.; Thorburn, D.; Pinzani, M. MAIT Cells Are Chronically Activated in Patients with Autoimmune Liver Disease and Promote Profibrogenic Hepatic Stellate Cell Activation. Hepatology 2018, 68, 172–186. [Google Scholar] [CrossRef]
- Krovi, S.H.; Gapin, L. Invariant Natural Killer T Cell Subsets—More Than Just Developmental Intermediates. Front. Immunol. 2018, 9, 1393. [Google Scholar] [CrossRef]
- Lenart, M.; Pyrć, K.; Siedlar, M. Can We Define CD3+CD56+ Cells as NKT Cells with Impunity? Clin. Immunol. 2021, 226, 108708. [Google Scholar] [CrossRef]
- Webb, T.J.; Giuntoli, R.L.; Rogers, O.; Schneck, J.; Oelke, M. Ascites Specific Inhibition of CD1d-Mediated Activation of Natural Killer T Cells. Clin. Cancer Res. 2008, 14, 7652–7658. [Google Scholar] [CrossRef]
- Liu, M.; Silva-Sanchez, A.; Randall, T.D.; Meza-Perez, S. Specialized Immune Responses in the Peritoneal Cavity and Omentum. J. Leukoc. Biol. 2021, 109, 717–729. [Google Scholar] [CrossRef]
- Wei, X.; Jin, Y.; Tian, Y.; Zhang, H.; Wu, J.; Lu, W.; Lu, X. Regulatory B Cells Contribute to the Impaired Antitumor Immunity in Ovarian Cancer Patients. Tumor Biol. 2016, 37, 6581–6588. [Google Scholar] [CrossRef]
- Yang, C.; Lee, H.; Jove, V.; Deng, J.; Zhang, W.; Liu, X.; Forman, S.; Dellinger, T.H.; Wakabayashi, M.; Yu, H.; et al. Prognostic Significance of B-Cells and PSTAT3 in Patients with Ovarian Cancer. PLoS ONE 2013, 8, e54029. [Google Scholar] [CrossRef]
- Akalin, H.E.; Laleli, Y.; Telatar, H. Bactericidal and Opsonic Activity of Ascitic Fluid from Cirrhotic and Noncirrhotic Patients. J. Infect. Dis. 1983, 147, 1011–1017. [Google Scholar] [CrossRef]
- Runyon, B.A.; Morrissey, R.L.; Hoefs, J.C.; Wyle, F.A. Opsonic Activity of Human Ascitic Fluid: A Potentially Important Protective Mechanism against Spontaneous Bacterial Peritonitis. Hepatology 1985, 5, 634–637. [Google Scholar] [CrossRef]
- Glargaard, S.; Boysen, T.; Pilely, K.; Garred, P.; Ytting, H. Prognostic Value of Lectin Pathway Molecules and Complement Proteins in Ascitic Fluid and Blood in Patients with Liver Cirrhosis. Scand. J. Gastroenterol. 2018, 53, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yue, B.; Wang, G.-Q.; Lu, S.-L. Serum and Ascites Levels of Macrophage Migration Inhibitory Factor, TNF-Alpha and IL-6 in Patients with Chronic Virus Hepatitis B and Hepatitis Cirrhosis. Hepatobiliary Pancreat. Dis. Int. HBPD Int. 2002, 1, 577–580. [Google Scholar]
- Alvarez-Silva, C.; Schierwagen, R.; Pohlmann, A.; Magdaleno, F.; Uschner, F.E.; Ryan, P.; Vehreschild, M.J.G.T.; Claria, J.; Latz, E.; Lelouvier, B.; et al. Compartmentalization of Immune Response and Microbial Translocation in Decompensated Cirrhosis. Front. Immunol. 2019, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.S.; Gretzer, C.; Wallerstedt, S. Elevation of Cytokines in Peritoneal Fluid and Blood in Patients with Liver Cirrhosis. Hepato-Gastroenterology 2004, 51, 505–509. [Google Scholar] [PubMed]
- Suliman, M.A.; Khalil, F.M.; Alkindi, S.S.; Pathare, A.V.; Almadhani, A.A.; Soliman, N.A. Tumor Necrosis Factor-α and Interleukin-6 in Cirrhotic Patients with Spontaneous Bacterial Peritonitis. World J. Gastrointest. Pathophysiol. 2011, 3, 92–98. [Google Scholar] [CrossRef]
- Navasa, M.; Follo, A.; Filella, X.; Jiménez, W.; Francitorra, A.; Planas, R.; Rimola, A.; Arroyo, V.; Rodés, J. Tumor Necrosis Factor and Interleukin-6 in Spontaneous Bacterial Peritonitis in Cirrhosis: Relationship with the Development of Renal Impairment and Mortality. Hepatology 1998, 27, 1227–1232. [Google Scholar] [CrossRef]
- Kim, J.K.; Chon, C.Y.; Kim, J.H.; Kim, Y.J.; Cho, J.H.; Bang, S.M.; Ahn, S.H.; Han, K.-H.; Moon, Y.M. Changes in Serum and Ascitic Monocyte Chemotactic Protein-1 (MCP-1) and IL-10 Levels in Cirrhotic Patients with Spontaneous Bacterial Peritonitis. J. Interf. Cytokine Res. 2007, 27, 227–230. [Google Scholar] [CrossRef]
- Hou, H.; Pan, H.; Li, Y.; Wei, J.; Kang, Y.; Mao, C.; Shang, J.; Kang, Y. Clinical Significance of Ascitic Interleukin-7 Expression Levels in Cirrhotic Patients Complicated with Spontaneous Bacterial Peritonitis. Chin. J. Hepatol. 2019, 27, 274–280. [Google Scholar] [CrossRef]
- Collison, L.W.; Delgoffe, G.M.; Guy, C.S.; Vignali, K.M.; Chaturvedi, V.; Fairweather, D.; Satoskar, A.R.; Garcia, K.C.; Hunter, C.A.; Drake, C.G.; et al. The Composition and Signaling of the IL-35 Receptor Are Unconventional. Nat. Immunol. 2012, 13, 290–299. [Google Scholar] [CrossRef]
- Wiest, R.; Garcia-Tsao, G. Bacterial Translocation (BT) in Cirrhosis. Hepatology 2005, 41, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Castellote, J.; Xiol, X.; Verdaguer, R.; Ribes, J.; Guardiola, J.; Gimenez, A.; Casais, L. Comparison of Two Ascitic Fluid Culture Methods in Cirrhotic Patients with Spontaneous Bacterial Peritonitis. Am. J. Gastroenterol. 1990, 85, 1605–1608. [Google Scholar] [PubMed]
- Soriano, G.; Esparcia, Ó.; Montemayor, M.; Guarner-Argente, C.; Pericas, R.; Torras, X.; Calvo, N.; Román, E.; Navarro, F.; Guarner, C.; et al. Bacterial DNA in the Diagnosis of Spontaneous Bacterial Peritonitis. Aliment. Pharm. Ther. 2011, 33, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Mani, I.; Vrioni, G.; Hadziyannis, E.; Alexopoulos, T.; Vasilieva, L.; Tsiriga, A.; Tsiamis, C.; Tsakris, A.; Dourakis, S.P.; Alexopoulou, A. Bacterial DNA Is a Prognostic Factor for Mortality in Patients Who Recover from Spontaneous Bacterial Peritonitis. Ann. Gastroenterol. 2021, 34, 852–861. [Google Scholar] [CrossRef]
- Wu, H.-X.; Hou, W.; Zhang, W.; Wang, Z.; Guo, S.; Chen, D.-X.; Li, Z.; Wei, F.; Hu, Z. Clinical Evaluation of Bacterial DNA Using an Improved Droplet Digital PCR for Spontaneous Bacterial Peritonitis Diagnosis. Front. Cell. Infect. Microbiol. 2022, 12, 876495. [Google Scholar] [CrossRef]
- Such, J.; Francés, R.; Muñoz, C.; Zapater, P.; Casellas, J.A.; Cifuentes, A.; Rodríguez-Valera, F.; Pascual, S.; Sola-Vera, J.; Carnicer, F.; et al. Detection and Identification of Bacterial DNA in Patients with Cirrhosis and Culture-Negative, Nonneutrocytic Ascites. Hepatology 2002, 36, 135–141. [Google Scholar] [CrossRef]
- Zapater, P.; Francés, R.; González-Navajas, J.M.; de la Hoz, M.A.; Moreu, R.; Pascual, S.; Monfort, D.; Montoliu, S.; Vila, C.; Escudero, A.; et al. Serum and Ascitic Fluid Bacterial DNA: A New Independent Prognostic Factor in Noninfected Patients with Cirrhosis. Hepatology 2008, 48, 1924–1931. [Google Scholar] [CrossRef]
- Engelmann, C.; Krohn, S.; Prywerek, D.; Hartmann, J.; Herber, A.; Boehlig, A.; Zeller, K.; Boehm, S.; Berg, T. Detection of Molecular Bacterascites in Decompensated Cirrhosis Defines a Risk with Decreased Survival. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1285–1292. [Google Scholar] [CrossRef]
- Bruns, T.; Reuken, P.A.; Stengel, S.; Gerber, L.; Appenrodt, B.; Schade, J.H.; Lammert, F.; Zeuzem, S.; Stallmach, A. The Prognostic Significance of Bacterial DNA in Patients with Decompensated Cirrhosis and Suspected Infection. Liver Int. 2016, 36, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.B.; van der Gast, C.J.; Bruce, K.D.; Marsh, P.; Collins, J.E.; Sutton, J.; Wright, M. Ascitic Microbiota Composition Is Correlated with Clinical Severity in Cirrhosis with Portal Hypertension. PLoS ONE 2013, 8, e74884. [Google Scholar] [CrossRef] [PubMed]
- Francés, R.; Zapater, P.; González-Navajas, J.M.; Muñoz, C.; Caño, R.; Moreu, R.; Pascual, S.; Bellot, P.; Pérez-Mateo, M.; Such, J. Bacterial DNA in Patients with Cirrhosis and Noninfected Ascites Mimics the Soluble Immune Response Established in Patients with Spontaneous Bacterial Peritonitis. Hepatology 2008, 47, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Caro, E.; Francés, R.; Zapater, P.; Pascual, S.; Bellot, P.; Such, J. Grade of Soluble Inflammatory Response Is Mainly Affected by Circulating Bacterial DNA Concentrations in Cirrhosis. Liver Int. 2016, 36, 1473–1480. [Google Scholar] [CrossRef]
- Such, J.; Hillebrand, D.J.; Guarner, C.; Berk, L.; Zapater, P.; Westengard, J.; Peralta, C.; Soriano, G.; Pappas, J.; Francés, R.; et al. Nitric Oxide in Ascitic Fluid Is an Independent Predictor of the Development of Renal Impairment in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. Eur. J. Gastroenterol. Hepatol. 2004, 16, 571–577. [Google Scholar] [CrossRef]
- Francés, R.; Muñoz, C.; Zapater, P.; Uceda, F.; Gascón, I.; Pascual, S.; Pérez-Mateo, M.; Such, J. Bacterial DNA Activates Cell Mediated Immune Response and Nitric Oxide Overproduction in Peritoneal Macrophages from Patients with Cirrhosis and Ascites. Gut 2004, 53, 860. [Google Scholar] [CrossRef]
- Lozano-Ruiz, B.; Bachiller, V.; García-Martínez, I.; Zapater, P.; Gómez-Hurtado, I.; Moratalla, A.; Giménez, P.; Bellot, P.; Francés, R.; Such, J.; et al. Absent in Melanoma 2 Triggers a Heightened Inflammasome Response in Ascitic Fluid Macrophages of Patients with Cirrhosis. J. Hepatol. 2015, 62, 64–71. [Google Scholar] [CrossRef]
- Fagan, K.J.; Rogers, G.B.; Melino, M.; Arthur, D.M.; Costello, M.-E.; Morrison, M.; Powell, E.E.; Irvine, K.M. Ascites Bacterial Burden and Immune Cell Profile Are Associated with Poor Clinical Outcomes in the Absence of Overt Infection. PLoS ONE 2015, 10, e0120642. [Google Scholar] [CrossRef]
- Piano, S.; Fasolato, S.; Salinas, F.; Romano, A.; Tonon, M.; Morando, F.; Cavallin, M.; Gola, E.; Sticca, A.; Loregian, A.; et al. The Empirical Antibiotic Treatment of Nosocomial Spontaneous Bacterial Peritonitis: Results of a Randomized, Controlled Clinical Trial. Hepatology 2016, 63, 1299–1309. [Google Scholar] [CrossRef]
- Arvaniti, V.; D’Amico, G.; Fede, G.; Manousou, P.; Tsochatzis, E.; Pleguezuelo, M.; Burroughs, A.K. Infections in Patients with Cirrhosis Increase Mortality Four-Fold and Should Be Used in Determining Prognosis. Gastroenterology 2010, 139, 1246–1256.e5. [Google Scholar] [CrossRef]
- Fernández, J.; Prado, V.; Trebicka, J.; Amoros, A.; Gustot, T.; Wiest, R.; Deulofeu, C.; Garcia, E.; Acevedo, J.; Fuhrmann, V.; et al. Multidrug-Resistant Bacterial Infections in Patients with Decompensated Cirrhosis and with Acute-on-Chronic Liver Failure in Europe. J. Hepatol. 2019, 70, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Ginés, P.; Rimola, A.; Planas, R.; Vargas, V.; Marco, F.; Almela, M.; Forne, M.; Miranda, M.L.; Llach, J.; Salmerón, J.M.; et al. Norfloxacin Prevents Spontaneous Bacterial Peritonitis Recurrence in Cirrhosis: Results of a Double-blind, Placebo-controlled Trial. Hepatology 1990, 12, 716–724. [Google Scholar] [CrossRef]
- Juanola, O.; Gómez-Hurtado, I.; Zapater, P.; Moratalla, A.; Caparrós, E.; Piñero, P.; González-Navajas, J.M.; Giménez, P.; Such, J.; Francés, R. Selective Intestinal Decontamination with Norfloxacin Enhances a Regulatory T Cell-mediated Inflammatory Control Mechanism in Cirrhosis. Liver Int. 2016, 36, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Zapater, P.; Caño, R.; Llanos, L.; Ruiz-Alcaraz, A.J.; Pascual, S.; Barquero, C.; Moreu, R.; Bellot, P.; Horga, J.F.; Muñoz, C.; et al. Norfloxacin Modulates the Inflammatory Response and Directly Affects Neutrophils in Patients with Decompensated Cirrhosis. Gastroenterology 2009, 137, 1669–1679.e1. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Sanyal, A.J.; Hylemon, P.B.; Sterling, R.K.; Stravitz, R.T.; Fuchs, M.; Ridlon, J.M.; Daita, K.; Monteith, P.; et al. Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy. PLoS ONE 2013, 8, e60042. [Google Scholar] [CrossRef]
- Elfert, A.; Ali, L.A.; Soliman, S.; Ibrahim, S.; Abd-Elsalam, S. Randomized-Controlled Trial of Rifaximin versus Norfloxacin for Secondary Prophylaxis of Spontaneous Bacterial Peritonitis. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Terg, R.; Llano, K.; Cobas, S.M.; Brotto, C.; Barrios, A.; Levi, D.; Wasen, W.; Bartellini, M.A. Effects of Oral Ciprofloxacin on Aerobic Gram-Negative Fecal Flora in Patients with Cirrhosis: Results of Short- and Long-Term Administration, with Daily and Weekly Dosages. J. Hepatol. 1998, 29, 437–442. [Google Scholar] [CrossRef]
Cell Type | Relative Abundance (% of All Peritoneal Leukocytes) |
---|---|
Monocyte/macrophages | 35–90 |
T lymphocytes | 35–45 |
NK cells | 8–10 |
Dendritic cells | 2–6 |
B lymphocytes | 2 |
Neutrophils | 5–8 |
Eosinophils | 4 |
Basophils | <1 |
Immune Cell | Health | Decompensated Cirrhosis | SBP |
---|---|---|---|
Macrophages | 3 subsets based on CD14/CD16 expression [16] Immunologically primed with high phagocytic potential to LPS [16] CRIg macrophages with high phagocytic and antimicrobial activity [22] | ↑ CD14++CD16++ subset [18] that have a pre-activated state [19] ↓ Phagocytic activity [21] ↑ Pro-inflammatory CD206+ large peritoneal macrophage subset [23] ↓ CRIghigh macrophages with increased cirrhosis severity [22] | ↓ Activation markers and impaired phagocytosis [25] ↓↓ CRIghigh macrophages [22] ↓ CD206+ macrophages [23] ↑ sCD206 in ascites, which predicts mortality in SBP [23] |
Neutrophils | Rapid influx into peritoneum during infection [28] | ↓ Phagocytosis and oxidative burst [29] | ↑↑ PMN count ↓ Activation markers (CD69, CD80) [30] ↓ NET generation [30] ↓ Oxidative burst activity [25] |
NK cells | Not available | ↑ NK cell frequency compared to blood due to migration towards CXCL10 [31] | Mixed activation/deactivation [31] |
Immune Cell | Health | Decompensated Cirrhosis | SBP |
---|---|---|---|
Effector T cells | CD8+ T cells > CD4+ T cells [6] Predominantly Th2 response during infection [53] | ↑ PD-1 and HLA-DR on CD8+ T cells, with reduced capacity to induce PBMC proliferation [55] | ↓ [57] or ↑ [54] CD4+ T cells ↑ PD-1, CTLA-4 and LAG-3 on CD8+ T cells with ↓ cytotoxicity [58] |
γδ T cells | ↑ Frequency [57] | ||
MAIT cells | Competent MAIT cells present [54] | ↑ Frequency competent MAIT cells [54,59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delo, J.; Forton, D.; Triantafyllou, E.; Singanayagam, A. Peritoneal Immunity in Liver Disease. Livers 2023, 3, 240-257. https://doi.org/10.3390/livers3020016
Delo J, Forton D, Triantafyllou E, Singanayagam A. Peritoneal Immunity in Liver Disease. Livers. 2023; 3(2):240-257. https://doi.org/10.3390/livers3020016
Chicago/Turabian StyleDelo, Joseph, Daniel Forton, Evangelos Triantafyllou, and Arjuna Singanayagam. 2023. "Peritoneal Immunity in Liver Disease" Livers 3, no. 2: 240-257. https://doi.org/10.3390/livers3020016
APA StyleDelo, J., Forton, D., Triantafyllou, E., & Singanayagam, A. (2023). Peritoneal Immunity in Liver Disease. Livers, 3(2), 240-257. https://doi.org/10.3390/livers3020016