Diagnosis and Localization of Prostate Cancer via Automated Multiparametric MRI Equipped with Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Overview of the AI-Assisted Diagnostic Method
2.3. MR Images and Histopathological Images
2.4. Texture Features and Likelihood Maps
2.5. Superpixel Segmentation and Cancer Diagnosis
2.6. Cross Validation
3. Results
4. Discussion
4.1. HLTI
4.2. Diagnostic Partition Using the Superpixel Method
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia Bennett, J.; Vilanova, J.C.; Guma Padro, J.; Parada, D.; Conejero, A. Evaluation of MR imaging-targeted biopsies of the prostate in biopsy-naive patients. A single centre study. Diagn. Interv. Imaging 2017, 98, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budaus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Ouzzane, A.; Puech, P.; Lemaitre, L.; Leroy, X.; Nevoux, P.; Betrouni, N.; Haber, G.P.; Villers, A. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology 2011, 78, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.M.; Robertson, N.L.; Arsanious, N.; Middleton, T.; Villers, A.; Klotz, L.; Taneja, S.S.; Emberton, M. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: A systematic review. Eur. Urol. 2013, 63, 125–140. [Google Scholar] [CrossRef]
- Carroll, P.R.; Parsons, J.K.; Andriole, G.; Bahnson, R.R.; Castle, E.P.; Catalona, W.J.; Dahl, D.M.; Davis, J.W.; Epstein, J.I.; Etzioni, R.B.; et al. NCCN Guidelines Insights: Prostate Cancer Early Detection, Version 2.2016. J. Natl. Compr. Cancer Netw. JNCCN 2016, 14, 509–519. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Rapisarda, S.; Bada, M.; Crocetto, F.; Barone, B.; Arcaniolo, D.; Polara, A.; Imbimbo, C.; Grosso, G. The role of multiparametric resonance and biopsy in prostate cancer detection: Comparison with definitive histological report after laparoscopic/robotic radical prostatectomy. Abdom. Radiol. 2020, 45, 4178–4184. [Google Scholar] [CrossRef]
- de la Calle, C.M.; Fasulo, V.; Cowan, J.E.; Lonergan, P.E.; Maggi, M.; Gadzinski, A.J.; Yeung, R.A.; Saita, A.; Cooperberg, M.R.; Shinohara, K.; et al. Clinical Utility of 4Kscore((R)), ExosomeDx and Magnetic Resonance Imaging for the Early Detection of High Grade Prostate Cancer. J. Urol. 2021, 205, 452–460. [Google Scholar] [CrossRef]
- Nakajima, Y.; Yamada, K.; Imamura, K.; Kobayashi, K. Radiologist supply and workload: International comparison--Working Group of Japanese College of Radiology. Radiat. Med. 2008, 26, 455–465. [Google Scholar] [CrossRef]
- Shin, T.; Smyth, T.B.; Ukimura, O.; Ahmadi, N.; de Castro Abreu, A.L.; Ohe, C.; Oishi, M.; Mimata, H.; Gill, I.S. Diagnostic accuracy of a five-point Likert scoring system for magnetic resonance imaging (MRI) evaluated according to results of MRI/ultrasonography image-fusion targeted biopsy of the prostate. BJU Int. 2018, 121, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, A.P.; Haslam, P.; Keanie, J.Y.; McCafferty, I.; Padhani, A.R.; Punwani, S.; Richenberg, J.; Rottenberg, G.; Sohaib, A.; Thompson, P.; et al. Prostate MRI: Who, when, and how? Report from a UK consensus meeting. Clin. Radiol. 2013, 68, 1016–1023. [Google Scholar] [CrossRef]
- Fehr, D.; Veeraraghavan, H.; Wibmer, A.; Gondo, T.; Matsumoto, K.; Vargas, H.A.; Sala, E.; Hricak, H.; Deasy, J.O. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 2015, 112, E6265–E6273. [Google Scholar] [CrossRef] [Green Version]
- Wibmer, A.; Hricak, H.; Gondo, T.; Matsumoto, K.; Veeraraghavan, H.; Fehr, D.; Zheng, J.; Goldman, D.; Moskowitz, C.; Fine, S.W.; et al. Haralick texture analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur. Radiol. 2015, 25, 2840–2850. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.D.; Yan, X.; Liu, H.; Zhou, M.; Hu, B.; Yang, G. Computer-Aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging JMRI 2018, 48, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Reynolds, H.; Wraith, D.; Williams, S.; Finnegan, M.E.; Mitchell, C.; Murphy, D.; Ebert, M.A.; Haworth, A. Predicting prostate tumour location from multiparametric MRI using Gaussian kernel support vector machines: A preliminary study. Australas. Phys. Eng. Sci. Med. 2017, 40, 39–49. [Google Scholar] [CrossRef]
- Shah, V.; Turkbey, B.; Mani, H.; Pang, Y.; Pohida, T.; Merino, M.J.; Pinto, P.A.; Choyke, P.L.; Bernardo, M. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med. Phys. 2012, 39, 4093–4103. [Google Scholar] [CrossRef] [Green Version]
- Platt, J.C. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsu, N.; Kurita, T. A New Scheme for Practical Flexible and Intelligent; IAPR Workshop CV: Tokyo, Japan, 1988; pp. 431–435. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, V.; Martini, M.; Dell’Aquila, M.; Musarra, T.; Orticelli, E.; Larocca, L.M.; Rossi, E.; Totaro, A.; Pinto, F.; Lenci, N.; et al. Histopathological Ratios to Predict Gleason Score Agreement between Biopsy and Radical Prostatectomy. Diagnostics 2020, 11, 10. [Google Scholar] [CrossRef]
- Cuocolo, R.; Stanzione, A.; Ponsiglione, A.; Romeo, V.; Verde, F.; Creta, M.; La Rocca, R.; Longo, N.; Pace, L.; Imbriaco, M. Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 2019, 116, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Ukimura, O.; Desai, M.M.; Palmer, S.; Valencerina, S.; Gross, M.; Abreu, A.L.; Aron, M.; Gill, I.S. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J. Urol. 2012, 187, 1080–1086. [Google Scholar] [CrossRef]
- Radtke, J.P.; Schwab, C.; Wolf, M.B.; Freitag, M.T.; Alt, C.D.; Kesch, C.; Popeneciu, I.V.; Huettenbrink, C.; Gasch, C.; Klein, T.; et al. Multiparametric Magnetic Resonance Imaging (MRI) and MRI-Transrectal Ultrasound Fusion Biopsy for Index Tumor Detection: Correlation with Radical Prostatectomy Specimen. Eur. Urol. 2016, 70, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, S.; Castellani, D.; Fabbietti, P.; Mazzucchelli, R.; Montironi, R.; Cecarini, M.; Carnevali, F.; Pierangeli, T.; Dellabella, M.; Ravasi, E. Combination of Multiparametric Magnetic Resonance Imaging With Elastic-fusion Biopsy Has a High Sensitivity in Detecting Clinically Significant Prostate Cancer in Daily Practice. Clin. Genitourin. Cancer 2020, 18, e501–e509. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | ||
---|---|---|
Age | 69.3 ± 4.4 | |
PSA (ng/mL) | 15.2 ± 15.4 | |
Prostate volume by TRUS (mL) | 27.6 ± 14.0 | |
Prostate weight of RP specimen (g) | 52.1 ± 16.4 | |
PSA density by TRUS (ng/mL2) | 0.63 ± 0.69 | |
PSA density of RP specimen (ng/mL/g) | 0.32 ± 0.35 | |
Gleason’s score (biopsy) | 3 + 3: 1 | 4 + 4: 3 |
3 + 4: 1 | 4 + 5: 3 | |
4 + 3: 6 | 5 + 4: 1 | |
Gleason’s score (RP specimen) | 3 + 3: 0 | 4 + 4: 0 |
3 + 4: 2 | 4 + 5: 8 | |
4 + 3: 5 | 5 + 4: 0 |
Case No | Age | PSA (ng/mL) | PV * (mL) | PW ** (g) | PSA Density by PV | PSA Density by PW | GS *** (Biopsy) | GS (RP Specimen) |
---|---|---|---|---|---|---|---|---|
1 | 65 | 4.31 | 30.0 | 40 | 0.14 | 0.11 | 4 + 3 | 4 + 3 |
2 | 69 | 4.66 | 18.1 | 64 | 0.26 | 0.07 | 4 + 4 | 4 + 3 |
3 | 65 | 11.05 | 23.6 | 60 | 0.47 | 0.18 | 4 + 5 | 4 + 5 |
4 | 60 | 5.17 | 10.3 | 54 | 0.50 | 0.10 | 4 + 3 | 4 + 5 |
5 | 76 | 7.11 | 64.5 | 48 | 0.11 | 0.15 | 4 + 5 | 4 + 5 |
6 | 70 | 15.13 | 19.9 | 32 | 0.76 | 0.47 | 4 + 3 | 4 + 3 |
7 | 68 | 44.80 | 30.2 | 60 | 1.48 | 0.75 | 4 + 4 | 4 + 5 |
8 | 67 | 7.54 | 27.1 | 46 | 0.27 | 0.16 | 4 + 4 | 4 + 5 |
9 | 72 | 7.54 | 20.3 | 40 | 2.72 | 1.39 | 4 + 5 | 4 + 5 |
10 | 64 | 55.40 | 21.3 | 46 | 0.29 | 0.13 | 3 + 3 | 3 + 4 |
11 | 72 | 6.10 | 21.4 | 46 | 1.18 | 0.55 | 5 + 4 | 4 + 5 |
12 | 71 | 25.18 | 40.0 | 62 | 0.37 | 0.24 | 4 + 3 | 4 + 5 |
13 | 75 | 14.97 | 49.3 | 100 | 0.30 | 0.15 | 4 + 3 | 3 + 4 |
14 | 73 | 4.74 | 17.0 | 36 | 0.28 | 0.13 | 3 + 4 | 4 + 3 |
15 | 72 | 7.60 | 20.4 | 48 | 0.37 | 0.16 | 4 + 3 | 4 + 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oishi, Y.; Kitta, T.; Osawa, T.; Abe, T.; Shinohara, N.; Nosato, H.; Sakanashi, H.; Murakawa, M. Diagnosis and Localization of Prostate Cancer via Automated Multiparametric MRI Equipped with Artificial Intelligence. Uro 2022, 2, 21-29. https://doi.org/10.3390/uro2010004
Oishi Y, Kitta T, Osawa T, Abe T, Shinohara N, Nosato H, Sakanashi H, Murakawa M. Diagnosis and Localization of Prostate Cancer via Automated Multiparametric MRI Equipped with Artificial Intelligence. Uro. 2022; 2(1):21-29. https://doi.org/10.3390/uro2010004
Chicago/Turabian StyleOishi, Yuichiro, Takeya Kitta, Takahiro Osawa, Takashige Abe, Nobuo Shinohara, Hirokazu Nosato, Hidenori Sakanashi, and Masahiro Murakawa. 2022. "Diagnosis and Localization of Prostate Cancer via Automated Multiparametric MRI Equipped with Artificial Intelligence" Uro 2, no. 1: 21-29. https://doi.org/10.3390/uro2010004
APA StyleOishi, Y., Kitta, T., Osawa, T., Abe, T., Shinohara, N., Nosato, H., Sakanashi, H., & Murakawa, M. (2022). Diagnosis and Localization of Prostate Cancer via Automated Multiparametric MRI Equipped with Artificial Intelligence. Uro, 2(1), 21-29. https://doi.org/10.3390/uro2010004