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Abstract: Prostate MRI scans for pre-biopsied patients are important. However, fewer radiologists
are available for MRI diagnoses, which requires multi-sequential interpretations of multi-slice images.
To reduce such a burden, artificial intelligence (AI)-based, computer-aided diagnosis is expected to
be a critical technology. We present an AI-based method for pinpointing prostate cancer location
and determining tumor morphology using multiparametric MRI. The study enrolled 15 patients
who underwent radical prostatectomy between April 2008 and August 2017 at our institution. We
labeled the cancer area on the peripheral zone on MR images, comparing MRI with histopathological
mapping of radical prostatectomy specimens. Likelihood maps were drawn, and tumors were divided
into morphologically distinct regions using the superpixel method. Likelihood maps consisted of
pixels, which utilize the cancer likelihood value computed from the T2-weighted, apparent diffusion
coefficient, and diffusion-weighted MRI-based texture features. Cancer location was determined
based on the likelihood maps. We evaluated the diagnostic performance by the area under the receiver
operating characteristic (ROC) curve according to the Chi-square test. The area under the ROC curve
was 0.985. Sensitivity and specificity for our approach were 0.875 and 0.961 (p < 0.01), respectively.
Our AI-based procedures were successfully applied to automated prostate cancer localization and
shape estimation using multiparametric MRI.

Keywords: artificial intelligence; localization; machine learning; multiparametric magnetic resonance
image; prostate cancer

1. Introduction

Technological progress in medical imaging has enabled more sophisticated diagnosis
using clinical images through the use of various modalities and protocols with thinner
slices at multiple time points. When fused with transrectal ultrasonography (TRUS)–
guided prostate biopsy, multiparametric magnetic resonance imaging (mpMRI) is a critical
modality for the detection of prostate cancer [1,2]; especially when the cancer is limited to
the ventral region or transitional zone of the prostate, where cancer is rarely detected by
systematic biopsy [3]. Moreover, a targeted biopsy can avoid overdetection of clinically
insignificant cancer [4]. Real-time MRI-TRUS fusion has been put into practical use for
targeted prostate biopsy, and the findings have led the European Association of Urology
and National Comprehensive Cancer Network guidelines to demonstrate the superiority
of diagnosis via targeted biopsy compared with systematic biopsy [5,6]. Recent review
supported the fundamental role of targeted biopsy, complementary with systemic biopsy in
enhancing detection rates and reducing the risk of missing clinically significant cancer [7].
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An unnecessary biopsy could be avoided using screening algorithms with up-front liquid
biopsy followed by mpMRI and biopsy [8].

On the other hand, the increase in the total number of radiograms that must be ana-
lyzed has imposed a severe burden on clinicians, who are responsible for the interpretation
of all radiograms [9]. Moreover, interpretation of prostate mpMRI for cancer detection
requires well-trained interpretation to make a diagnosis by the combined findings from
multi-sequential MR images such as T2-weighted images (T2WI), diffusion-weighted im-
ages (DWI), apparent diffusion coefficient (ADC) maps, and dynamic contrast-enhanced
images [10,11].

To reduce such an interpretational burden and improve productivity in clinical prac-
tice, artificial intelligence (AI)-based computer-aided diagnosis (CAD) is expected to be
a critical technology. Furthermore, localizing a cancer is clinically more important than
determining the cancer presence or aggressiveness because, at present, histopathological
diagnosis is essential for a definitive diagnosis of prostate cancer. A number of studies
have reported that the detection of cancer location by mpMRI enhances the accuracy of tar-
geted prostate biopsy [1,2], whereas studies of AI-based automated cancer diagnosis from
prostate mpMRI have mainly focused on the cancer presence or aggressiveness [12–14]. Fur-
thermore, previous reports about AI-based cancer localization proposed individual-pixel
diagnosis [15,16], but the methods used in those studies had shape-estimation problems
that generated vermiculate overdetection and omissions owing to statistical outliers [15].

To resolve such problems, we propose a method of superpixel segmentation of like-
lihood maps, which can pinpoint cancer distribution. Likelihood maps consist of the
cancer likelihood value for each pixel computed from texture information of MR im-
ages using a support vector machine (SVM). The superpixel method divides images into
non-linearly shaped regions, aggregating neighboring pixels with similar pixel values.
Collaboration between the two machine-learning techniques enables more accurate cancer
localization and shape estimation and clearly delineates the physiological boundary and
anatomical continuity.

We present an AI-based diagnostic method of prostate cancer localization and shape
determination using mpMRI.

2. Materials and Methods

This study has received the approval of the Institutional Review Board for clinical
research of Hokkaido University Hospital.

2.1. Study Population

This study enrolled 15 prostate cancer patients who underwent radical prostatectomy
(RP) and prostate mpMRI at the Hokkaido University Hospital between April 2008 and
August 2017. The patients met the following inclusion criteria: (i) biopsy naïve MR images
were available in all of the three sequences, i.e., the T2WI OR sequences; T2WI, DWI,
and ADC maps, (ii) whole-mount histopathological tumor maps were available, and (iii)
patients had no prior treatment for prostate cancer or surgery for a benign prostate tumor.
Those patients whose cancer sites were not visible on MRI or whose cancer sites were too
small and patients without peripheral zone cancer were excluded from the study. Baseline
characteristics of PCa patients are shown in Tables 1 and 2.

2.2. Overview of the AI-Assisted Diagnostic Method

Our automated diagnostic procedure consisted of three steps (Figure 1). The first step
was to extract texture features of tumors and draw likelihood maps. For each pixel, the
texture features were calculated as numeric values from neighbor or inter-sequential pixel
values on MR images, and the SVM converted the texture features into a cancer probability
as one of the pixel values of likelihood maps [17]. In this way, we generated “likelihood
maps” that defined the cancer distribution.
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Table 1. Baseline characteristics of 15 PCa patients.

Mean ± SD

Age 69.3 ± 4.4

PSA (ng/mL) 15.2 ± 15.4

Prostate volume by TRUS (mL) 27.6 ± 14.0

Prostate weight of RP specimen (g) 52.1 ± 16.4

PSA density by TRUS (ng/mL2) 0.63 ± 0.69

PSA density of RP specimen (ng/mL/g) 0.32 ± 0.35

Gleason’s score (biopsy)
3 + 3: 1 4 + 4: 3
3 + 4: 1 4 + 5: 3
4 + 3: 6 5 + 4: 1

Gleason’s score (RP specimen)
3 + 3: 0 4 + 4: 0
3 + 4: 2 4 + 5: 8
4 + 3: 5 5 + 4: 0

Table 2. Baseline characteristics of each patient.

Case
No Age PSA

(ng/mL)
PV *
(mL)

PW **
(g)

PSA Density
by PV

PSA Density
by PW

GS ***
(Biopsy)

GS
(RP

Specimen)

1 65 4.31 30.0 40 0.14 0.11 4 + 3 4 + 3
2 69 4.66 18.1 64 0.26 0.07 4 + 4 4 + 3
3 65 11.05 23.6 60 0.47 0.18 4 + 5 4 + 5
4 60 5.17 10.3 54 0.50 0.10 4 + 3 4 + 5
5 76 7.11 64.5 48 0.11 0.15 4 + 5 4 + 5
6 70 15.13 19.9 32 0.76 0.47 4 + 3 4 + 3
7 68 44.80 30.2 60 1.48 0.75 4 + 4 4 + 5
8 67 7.54 27.1 46 0.27 0.16 4 + 4 4 + 5
9 72 7.54 20.3 40 2.72 1.39 4 + 5 4 + 5

10 64 55.40 21.3 46 0.29 0.13 3 + 3 3 + 4
11 72 6.10 21.4 46 1.18 0.55 5 + 4 4 + 5
12 71 25.18 40.0 62 0.37 0.24 4 + 3 4 + 5
13 75 14.97 49.3 100 0.30 0.15 4 + 3 3 + 4
14 73 4.74 17.0 36 0.28 0.13 3 + 4 4 + 3
15 72 7.60 20.4 48 0.37 0.16 4 + 3 4 + 3

* PV: prostate volume estimated by TRUS, ** PW: prostate weight of RP specimen, *** GS: Gleason’s score.

In the second step, the superpixel method divided a likelihood map into ~600 non-
linear superpixel regions to bring cancerous pixels together [18]. A cancer diagnosis for
each superpixel constituted the final step in our procedure. Each superpixel was assigned
as “cancer” or “normal” based on its mean likelihood. We implemented the automated
cancer detection program using MATLAB®.

2.3. MR Images and Histopathological Images

All MR images were acquired with a 3.0 T scanner (Achieva 3.0-T TX series R3.21;
Philips Medical Systems, Best, The Netherlands) with a pelvic phased-array coil (32-channel
SENSE Torso/Cardiac Coil). No endorectal coil was used. The slice thickness was 3 mm for
all sequences. The following MR sequences were obtained: axial T2WI and axial DWI. The
ADC values were calculated from two DWI scans acquired with b = 0 and 2000 s/mm2,
and ADC maps were then rebuilt by calculating the ADC values for each pixel of each slice.
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Figure 1. Overview of our AI-based CAD. This procedure included training the SVM, generating the
likelihood maps, and superpixel segmentation. The final diagnosis was fully automated.

RP specimens were sectioned perpendicular to the prostatic urethra from the apex
to the base according to Japanese General Rules for Prostatic Cancer. Pathologists in our
institution examined the specimens and mapped the cancer regions that were apparent in
all cross-sections.

We labeled the cancer regions on the MR images by comparing the histopathological
maps with the MR images. If both the histopathological maps and MR findings indicated
the presence of prostate cancer, it was judged as a cancer region.

2.4. Texture Features and Likelihood Maps

For the first step, we designed a new texture feature named higher-order local tex-
ture information (HLTI), which is a suitable customization of higher-order local auto-
correlation (HLAC) for pixel-based computation [19]. HLTI includes intra-sequential and
inter-sequential HLAC, contrast, and homogeneity.

SVM posterior probability computation generated four types of primary likelihood
maps by changing the combination of MR sequences for feature extraction: T2WI and ADC
maps; T2WI and DWI; ADC maps and DWI; T2WI, ADC maps, and DWI. Subsequently, we
generated secondary likelihood maps, giving each pixel the least cancer likelihood among
the four primary likelihood maps.

2.5. Superpixel Segmentation and Cancer Diagnosis

In this study, we applied the superpixel method to non-linear segmentation of like-
lihood maps to describe cancer distribution. The superpixel method uses pixel-based,
k-means clustering. For our purposes, the superpixel method used a simple linear iterative
clustering (SLIC) algorithm [18], and hyperparameters consisted of the following: number
of superpixels = 600, compactness = 60, and number of iterations = 15. The SLIC algorithm
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groups neighbor pixels into superpixel regions with similar pixel values. In this way, the
peripheral zone of the tumor was divided into cancerous superpixels and benign ones.

We calculated the mean likelihood of cancerous tissue for each superpixel and set 0.5
as the diagnostic threshold. We defined superpixels whose mean likelihood was greater
than 0.5 as a diagnosis of cancer and defined superpixels containing more than 50% of
cancer pixels as true cancer. We evaluated the diagnostic accuracy of our AI-based CAD
via area-weighted sensitivity, specificity, and the area under the area-weighted receiver
operating characteristic (ROC) curve. Pearson’s Chi-square test was used to compare
categorical data, with p < 0.01 considered statistically significant. “Area-weighted” implies
that each superpixel was counted as its number of pixels.

2.6. Cross Validation

SVM classifiers were evaluated independently through leave-one-patient-out cross
validation. Cross validation is a technique used to evaluate classifiers by partitioning the
original sample into a training dataset from 14 patients to train the classifier and a test
dataset from one patient to evaluate it. The SVM classifier used radial basis function kernels,
and the hyperparameters consisted of each kernel’s width parameter γ and misclassification
penalty C.

3. Results

The area under the area-weighted ROC curve was 0.985 as shown in Figure 2. Exam-
ples of AI diagnosis are shown in Figure 3. In these examples, area-weighted sensitivity,
specificity, positive predictive value, and negative predictive value were 87.5%, 96.1%,
73.7%, and 98.4% (p < 0.0001), respectively.
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4. Discussion

Our AI-based CAD accurately identified prostate cancer location and shape using
mpMRI despite the small population of patients. The most important advantage of our
procedure is that our CAD requires just more than a dozen training datasets to provide
adequate performance, whereas the training of neural networks requires hundreds or
thousands of datasets or data augmentation [14]. This is because we chose pixel-based
feature extraction. In other words, all the peripheral zone pixels were data samples for
training the SVM. Although the population size was very small, the data sample size was
very large in this study.

Little has been reported about cancer localization through the automated diagnosis
of prostate MR images, but some studies have focused on cancer presence or aggressive-
ness [12–14]. In 2012, the first report, to our knowledge, of AI-based CAD of prostate cancer
via MRI proposed that cancer probability maps can be computed by SVM [16]. Strictly
speaking, however, this CAD did not make a final diagnosis but rather provided only
a “distribution of cancer probability” to facilitate accurate diagnosis by physicians. In
2017, Sun et al. reported on automated cancer localization including a final diagnosis [15].
Classifying individual pixels by SVM, they succeeded in extracting cancer regions of typical
morphology. However, this SVM diagnosed individual pixels using extremely local infor-
mation without subregional aggregate computation. In this way, it generated a number of
minute overdetection and omissions that reduced the diagnostic performance. Fehr et al.
indicated that, under manual segmentation of cancer regions, SVM and the Haralick feature
could not only classify cancer regions but also estimate Gleason’s score [20], especially with
SMOTE data augmentation [12]. The present study demonstrates that the combination of



Uro 2022, 2 27

the likelihood map and pixel aggregation by the superpixel method enhances cancer local-
ization and shape estimation. This combination filtered out minute misclassifications and
automatically extracted cancer regions, thereby accurately portraying tumor size and shape.
Correct localization would reduce the length of biopsy core to achieve Gleason’s score
agreement between biopsy and RP specimen and lead to providing accurate information
for a decision of active surveillance or treatment [21].

The localization of cancer in the prostate requires detailed knowledge of the distri-
bution of local populations of cancer cells. We labeled the cancer regions in each MR
slice according to histopathological prostate cancer mappings, and our SVM computation
estimated the cancer probability for individual pixels. These pixel-based procedures for
cancer labeling and estimating cancer probability achieved accurate localization of cancer
and approximation of tumor shape. In this report, we manually labeled cancer regions on
each T2WI, comparing histopathological maps with MR images, whereas Sun et al. directly
compared their AI-based diagnosis with raw histopathological maps. We chose this ap-
proach because we assumed that cancer distribution in raw histopathological maps did not
fit with most MR images and could even cause incorrect labeling. In fact, the slice thickness
and angle differed between our histopathological maps and MR images. Formalin fixation
or a surgical procedure could modify the RP specimen, but the computation of texture
features in a single pixel causes statistical outliers because of the absence of statistical
processing such as averaging. Outliers are major causes of vermiculate overdetection and
omissions. Superpixel segmentation contributed to resolving this outlier problem.

Moreover, we generated four types of primary likelihood maps by changing the
combination of MR sequences from which the texture feature was extracted. We synthesized
secondary likelihood maps from the four primary likelihood maps. The reason why
secondary maps are needed is that using only one type of likelihood map often diminishes
any overdetection in other types of likelihood maps, whereas true cancer tends not to be
diminished by any type of likelihood map.

4.1. HLTI

Here we propose the use of the newly designed texture feature named HLTI, which
is an extended texture feature of HLAC [19], for multi-sequential MR images. HLTI is
computed from pixel values of a central pixel and neighboring pixels and differs from
the existing HLAC or Haralick feature with respect to whether the texture feature is
differentially extracted from each sequential MR image or is extracted from two or three
sequential MR images in a lump [20]. As far as we know, little has been reported about such
inter-sequential feature extraction from prostate mpMRI. Inter-sequential feature extraction
is expected to reduce the deterioration of inter-sequential information by standardization.

4.2. Diagnostic Partition Using the Superpixel Method

Accurate cancer localization for targeted biopsy or estimation of capsule invasion
definitely requires detailed shape estimation. In our unpublished preliminary experiment,
we divided MR images into small rectangular patches and diagnosed each patch. This
procedure, named ‘partial diagnosis’, can hardly estimate the shape of cancer regions
because MR images were divided into patches, which ignored the true physiological
boundary. This automatic cancer segmentation could contribute to extracting cancer-site-
based features to make more elaborate diagnoses [22].

Diagnosis of aggregated cancerous pixels, however, is a reasonable method for de-
tailed shape estimation compared with partial diagnosis. We call this procedure ‘diagnostic
partition’. We used the SLIC superpixel method for segmentation [18], which aggregates
neighboring pixels with similar values. The superpixel method segments raw MR images
in a manner that is blind to texture information. Therefore, raw MR images should be
converted into cancer distribution images, which express cancer likelihood as pixel values.
In other words, the superpixel method partitions the likelihood maps. In this way, our
procedure enables non-linear segmentation, thereby preserving the physiological bound-
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ary. Furthermore, the superpixel method has the benefit of absorbing outlier-induced
misdiagnosed pixels as neighboring pixels.

4.3. Limitations

There are some limitations to this study. First, histopathological maps cannot be
directly applied to MR images as cancer labelling because the location of the MR slice does
not exactly match that of histopathological maps or even other sequences of MR images
in terms of slice angle, thickness, and scale because of body motion, rectum peristalsis,
formalin fixation, surgical procedure, or MRI device settings. It is difficult to correct
such mismatches. However, combining automated organ segmentation with image fusion
techniques such as elastic fusion or shrinkage factor might facilitate automated and accurate
cancer labeling [23–25].

Secondary, no cancer-free, whole-mount prostate specimens were available. Although
we demonstrated favorable performance of our CAD, it remained unknown how correctly
our CAD diagnoses benign prostate. Prostate MRI before radical cystectomy would break
through the limitation.

Third, our CAD doesn’t support the diagnosis of Gleason’s score, local tumor invasion,
or rare histological variant. This is because our CAD needs at least hundreds of training
data. In this study, pixel-based training, which provides large training data, enables our
CAD to achieve the benchmarks. We have to mention that only 15 patients were enrolled
in this single-center study. A future study including a large population would resolve
this problem.

5. Conclusions

In conclusion, diagnostic partition using the superpixel method and SVM-computed
likelihood maps enables automated diagnosis of prostate cancer location and shape in mpMRI.
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