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Abstract: Microscopic and digital whole-slide images (WSIs) often suffer from limited spatial resolu-
tion, hindering accurate pathological analysis and cancer diagnosis. Improving the spatial resolution
of these pathology images is crucial, as it can enhance the visualization of fine cellular and tissue
structures, leading to more reliable and precise cancer detection and diagnosis. This paper presents a
comprehensive comparative study on super-resolution (SR) reconstruction techniques for prostate
WSI, exploring a range of machine learning, deep learning, and generative adversarial network (GAN)
algorithms. The algorithms investigated include regression, sparse learning, principal component
analysis, bicubic interpolation, multi-support vector neural networks, an SR convolutional neural
network, and an autoencoder, along with advanced SRGAN-based methods. The performance of
these algorithms was meticulously evaluated using a suite of metrics, such as the peak signal-to-noise
ratio (PSNR), structural similarity index metrics (SSIMs), root-mean-squared error, mean absolute
error and mean structural similarity index metrics (MSSIMs). The comprehensive study was con-
ducted on the SICAPv2 prostate WSI dataset. The results demonstrated that the SRGAN algorithm
outperformed other algorithms by achieving the highest PSNR value of 26.47, an SSIM of 0.85, and
an MSSIM of 0.92, by 4× magnification of the input LR image, preserving the image quality and
fine details. Therefore, the application of SRGAN offers a budget-friendly counter to the high-cost
challenge of acquiring high-resolution pathology images, enhancing cancer diagnosis accuracy.

Keywords: cancer diagnosis; generative adversarial networks; histopathology; super-resolution;
prostate WSI

1. Introduction

The prostate gland, crucial for male reproductive health, is susceptible to cancer,
necessitating meticulous diagnostic approaches [1]. Histopathology plays a pivotal role in
prostate cancer diagnosis, examining tissue samples obtained through biopsies to identify
cancerous cells [1,2]. This test, including transrectal ultrasound-guided biopsies and
molecular pathology techniques, provides crucial insights into the cancer’s nature and
guides personalized treatment strategies [3,4]. Moreover, the significance of resolution
in imaging histopathology slides is well known, as higher resolution (HR) enables more
precise visualization of tumor characteristics and facilitates accurate diagnosis [5]. Clinical
tissue tests, complemented by HR imaging, are indispensable for monitoring treatment
response and disease progression in prostate cancer management.

A whole-slide image (WSI) is a gigapixel image consisting of hundreds of thousands
of digital values called pixels, which serves as a crucial component in highlighting cellular
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structures [6]. Pixels in WSIs may represent gray levels, colors, or intensities. Spatial
resolution, determined by the pixel count in rows and columns, ensures sharpness and
detail in these images. However, WSI acquisition sometimes results in lower resolution (LR)
images due to hardware limitations, such as sensor size, scanning profile, or processing
capabilities, making it hard to acquire high-resolution (HR) WSIs to facilitate a complete
examination of cellular components and structures. One of the major reasons could be
that older versions of hardware and constraints make it hard to acquire HR WSIs, posing
challenges for a seamless digital pathology workflow. To address this, super-resolution (SR)
and image fusion techniques are employed. SR algorithms are a category of algorithms that
enhance resolution computationally, improving detail without hardware upgrades, while
image fusion combines multiple images to yield composite outputs with superior detail [7].
The SR algorithms can intelligently infer and fill in missing details, producing an image
with finer clarity and enhanced visual quality [7]. SR algorithms are usually preferred for
their cost-effectiveness and feasibility [5]. They leverage computational power to refine
existing images, offering a scalable solution for enhancing image quality across platforms.
This accessible approach bypasses costly hardware upgrades, providing clearer and more
accurate visual data for a seamless digital pathology (DP) workflow.

The histological details, like the cellular structure and glandular shapes, are sometimes
required to be magnified to be visible; therefore, higher spatial resolution is important as
the display screen becomes larger and viewing distances smaller. Enhancing the spatial
resolution of microscopic and WSIs through SR methods can, therefore, be interesting as it
can make large resources of LR data available and vital for developing artificial intelligence
(AI)-based automated diagnosis systems. This paper investigates various SR techniques
aimed at enhancing the resolution of prostate WSIs, with the goal of achieving better
cellular visualization. The existing machine learning (ML) models and SR convolutional
neural networks (CNNs) are shown to fail to give very detailed SR WSIs, as they lack
the architecture for generating the images using the discriminator noise [7]. The effective
spatial resolution will depend on how the compression system interacts with the displayed
content. The primary objective of image SR is to enhance image quality by creating high-
quality outputs from LR inputs. This process significantly improves visual perception
by drawing attention to finer details, having softer textures, and having enhanced clarity
by learning patterns and relationships from a dataset of paired LR and HR images. In
particular, in DP, SR techniques can play an important role in facilitating histological image
analysis and more precise diagnoses. Figure 1 demonstrates how SR is incorporated to
achieve a magnified image and how it helps to fill the pixels in between, so that we perceive
enhanced WSIs. This content emphasizes the technical aspects of SR algorithms in WSIs,
using the dataset primarily to support our research objectives.

Figure 1. A demonstration of how a region of a WSI is super-resolved. The input low-resolution
image (left) is magnified four times (4×) and resolved using the super-resolution technique to obtain
a high-resolution image (right).
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2. Preliminaries

SR can be performed by employing various functions including basic algorithms
like bilinear interpolation, sparse coding, optimization, nearest neighbors, and frequency
domain transformation, as well as advanced algorithms like the SR-CNN, autoencoder
(AE), and SR-generative adversarial network (GAN) [7,8]. Some of these basic algorithms
are discussed below. The GAN architecture will be introduced later:

Bilinear interpolation: IHR(x, y) = a · ILR(x1, y1) + b · ILR(x2, y1)

+ c · ILR(x1, y2) + d · ILR(x2, y2) (1)

where

IHR(x, y) is the pixel value at the HR image at coordinates(x, y),
ILR(xi, yj) is the pixel value at the LR image at coordinates(xi, yj),
a, b, c, d are the interpolation coefficients, determined based on the relative positions of
(x, y).

In the bilinear interpolation algorithm, four image points denoted as coefficients
(a, b, c, d) are arranged and their interpolation value is determined to increase the resolu-
tion [9].

Sparse coding: min
D,X

1
2
∥Y − DX∥2

F + λ∥X∥1 (2)

where Y is the input data, D is the dictionary, X is the sparse representation, and λ controls
the sparsity [10].

Optimization: : min
x

f (x) subject to gi(x) ≤ 0, i = 1, . . . , m (3)

where f (x) is the objective function and gi(x) are the constraint functions.
Here, the goal is to find the input value x so that we obtain the least f (x). Using

inequality constraints, the algorithm iteratively adjusts x to minimize the objective function
by adhering to the constraint function. The trade-off in this algorithm is that it balances
between minimizing f (x) and satisfying the constraints.

Nearest neighbors: arg mini∥q − xi∥ (4)

where q is the query point and xi is the data point.
This algorithm strives to find the value of data point xi to minimize the absolute

difference between q and each data point xi. The trade-off of nearest neighbors is that it
can be sensitive to outliers and noisy data.

Frequency domain transformations: F{ f (t)} = F(ω) =
∫ ∞

−∞
f (t)e−jωt dt (5)

where f (t) is the signal in the time domain, F(ω) is its Fourier transform, and ω is the
angular frequency.

General Super-Resolution Block Diagram

The below Figure 2 demonstrates the generalized block diagram of SRGAN. The image
generated by the generator block is normally obtained by distributing noise and processing
it using the function G(Z).
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Figure 2. Generalized block diagram of super-resolution generative adversarial network (SRGAN). G
represents the generator, and D represents the discriminator.

The input data are distributed, i.e., the WSI is fed into the discriminator block, D,
as it considers the input as the benchmark ground truth image for comparison with the
generated image. Generally, the generator and discriminator blocks are multilayered neural
networks. θG and θD are the parameters for both blocks.

GANs [11] can be used for generating SR images using training dataset and noise,
and from Figure 2, we can see that the GAN is trained with histopathological images,
while the generator tries to generate fake images as its output. The discriminator tries
to discriminate the generated images by comparing them with real ground truth images.
Finally, there is the classifier, which helps in deciding whether the image, after passing
through the discriminator, is super-resolved or not. In the case of SR, it can be a binary
classifier, so if the image obtained after the discriminator stage is not satisfactory, it is
sent back to the generator as noise, so that the generator can improve the quality of the
image generation. The final output from the classifier is up-scaled 4× for the input image.
The algorithm can be explained mathematically as follows:

• The generator aims to minimize the probability that the discriminator correctly classi-
fies the generated data as fake:

min
G

Ez∼pz(z)[log(1 − D(G(z)))]; (6)

• The generator’s update involves taking the gradient with respect to its parameters θG:

∇θGEz∼pz(z)[log(1 − D(G(z)))]; (7)

• The discriminator aims to maximize the probability of correctly classifying the real
data and the probability of correctly classifying the generated data as fake:

max
D

Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]; (8)
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• The discriminator’s update involves taking the gradient with respect to its parame-
ters θD:

∇θD

(
Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]

)
(9)

These gradients are then used in an optimization algorithm to update the parameters
of the discriminator and generator in an alternating fashion until convergence;

• The overall objective of the GAN is a min–max game:

min
G

max
D

Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (10)

where
G is the generator,
D is the discriminator,
pdata(x) is the distribution of the real data, and
pz(z) is the distribution of the noise.

3. Related-Work

The evolution of SR techniques from basic methods like bicubic interpolation to
advanced mathematical models such as the SR-CNN, AE, and GANs underscores the con-
tinuous research to improve image detail and quality. This is particularly relevant in fields
that demand high precision, like histopathology. It is clear that the intersection of domain
knowledge and mathematical innovation is pivotal in obtaining superior SR outcomes.

The journey to enhance image resolution began with the traditional methods such
as bicubic interpolation. However, this technique resulted in larger, but overly inter-
polated and blurry images, lacking the sharpness needed for histopathological images.
Akhtar et al. [12] addressed this issue by combining bicubic interpolation with a 2D inter-
polation filter. Bicubic interpolation creates an HR image, and the 2D filter refines it by
considering local statistics and geometry, significantly improving high-frequency details
compared to basic bicubic interpolation. To overcome bicubic interpolation’s limitations,
Liu et al. [13] introduced a PCA-based approach, emphasizing pattern analysis and im-
proving image quality for human-focused applications. Their work explored multiple
PCA extensions, such as PPCA, KPCA, MDPCA, and RPCA, analyzing pattern analysis in
SR [14,15].

To counter blurring effects from bicubic interpolation filters, Tai et al. [16] introduced
spatial sharpening filters. These filters strategically enhance image sharpness and clarity
by considering self-similarity. They employed linear regression techniques to adaptively
reconstruct models for improving the visual quality of scaled-up images. Building on
these advancements, Yang et al. [17] proposed an image SR technique rooted in sparse
signal representation. Inspired by the idea of representing image patches as sparse linear
combinations of elements, Zhang et al. [18] obtained a sparse representation for each
patch within the LR input images. Their algorithm was based on training dictionaries
over LR images, computing the mean pixel values and solving the optimization problem.
Finally, the output obtained was an SR image. This process involves complex mathematical
equations, such as the optimization problem, which seeks to minimize the difference
between the generated HR image and the desired result. It is a testament to the evolution
of image SR, where advanced mathematical approaches, like sparse signal representation,
are harnessed to achieve increasingly HR images.

In the medical image SR domain, various innovative techniques have emerged.
Gavade et al. [19] presented a hybrid model combining support vector regression and
a multi-variate statistical neural network (MVSNN), optimized using the DolLion algo-
rithm, which enhances convergence and solutions. Zhu et al. [20] proposed a model that
intends to super-resolve the artifacts and features by considering the processing stage
result with the use of sparse learning application. El-Shafai et al. [21] introduced a CNN
framework tailored to WSIs [22], particularly tumor-related ones, using patch extraction,
non-linear mapping, and reconstruction to upscale images, highlighting the transforma-
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tive potential of deep learning (DL). Chen et al. [23] presented the 3D densely connected
super-resolution network (DCSRN) for restoring high-resolution features in structural
brain MRI images, surpassing traditional methods. Bychkov et al. [24] proposed a fusion
of convolutional and recurrent architectures for predicting colorectal cancer from tumor
tissue samples, showing the potential of DL in direct prognostic information extraction
from medical images.

Gao et al. [25] introduced a novel deep network model tailored to medical image
SR reconstruction, capitalizing on the repetitive structure and black borders prevalent
in medical images. Departing from the SR-CNN architecture, the model incorporates a
secondary convolution layer for enhanced feature representation and overlapping pooling
layers to emphasize critical features and introduces a link layer connecting the second
pooling layer to the reconstruction layer for combined local and global feature utilization.
The experimental results demonstrated a notable average PSNR improvement of 2.1 dB, 0.6
dB, and 1 dB compared to the original SR-CNN, showcasing superior performance over
other CNN algorithms.

Gu et al. [26] presented MedSRGAN, a specialized approach for medical images.
Their generator network combines a CNN and a region-weighted multi-attention network
(RWMAN) to emphasize meaningful regions in medical images. Multi-task loss during
training enhances realistic patterns in super-resolved medical images. Mahapatra et al. [27]
proposed progressive GANs for multi-stage SR, employing a triplet loss to generate high-
resolution images. Oyelade et al. [28] introduced ROImammoGAN, tailored to ROI-based
digital mammograms, addressing aspects like distortion and abnormalities. Iqbal et al. [29]
advocated GANs over traditional DL algorithms to overcome limited medical data, show-
casing the MI-GAN for retinal images and segmented masks, yielding promising Dice
coefficients. The application of a multi-scale GAN-based model and a mixed-attention GAN
in the restoration of image details for diagnosis showed promising results. PathSRGAN,
a multi-supervised SR model utilizing GANs, has demonstrated success in enhancing the
resolution of cytopathological images, further highlighting the significance of GANs in
the field.

In summary, these advancements in SR techniques, from mathematical innovations
to deep learning models like specialized GANs, exemplify the commitment in delivering
high-quality super-resolved medical images. The journey from traditional methods to
advanced machine learning reflects the increasing role of mathematics and AI in enhancing
image quality for diagnosis and analysis. A brief literature review of GANs as shown in
Table 1 gives a brief of the results achieved on the adopted models.

Table 1. Comparative performance study of super-resolution using SR models.

Models & Authors PSNR RMSE SSIM MSSIM SNR Dataset or Images

Bicubic Interpolation [30] 27.32 - - - - Lenna image

43.3 - - - - Esophagus CT image
Deep Convolutional Network [25] 42.1 - - - - Nasal CT image

38.9 - - - - Pelvic CT image

Linear Regression [16] 27.67 - - - - Multi-spectral image dataset

Residual CNN [14] 42.76 - 0.9953 - - T2w MRI brain

26.59 15.64 0.98 0.95 24.36 Breast WSI
SR-RCNN 1 [31] 19.75 11.60 0.98 0.97 28.31 Kidney WSI

24.79 20.32 0.96 0.93 22.07 Pancreas WSI

32.17 - 0.9350 - - Urban100 “img082”
Deep Recursive Convolutional Neural

Network [32] 24.36 - 0.7399 - - B100 “134035”

27.66 - 0.9608 - - Set14 “ppt3”
1 SR-RCNN: super-resolution recurrent convolutional neural network.
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4. Methods and Materials
4.1. Super-Resolution Using Machine Learning and Deep Learning

ML algorithms contribute by analyzing data patterns to generate an HR WSI patch,
while DL techniques like the SR-CNN excel in extracting intricate features for HR WSI patch
generation [8]. Notably, SRGANs, a type of generative artificial intelligence model, are
prominently utilized to create HR WSI patches through adversarial training. DL is integral
in advancing pathological SR by excelling in pattern recognition by deciphering intricate
details within LR WSIs and identifying essential features. The ML algorithm performance
comparison demonstrated in this paper is for bicubic interpolation [33,34], and it is con-
sidered to be efficient when speed is not an issue. Linear regression, the four-orientation
Laplace mask having second-order derivative, is used to make blurred images sharp by
enhancing their quality and fine details. However, the use of masks in linear regression
comes with the addition of noise in the image in gradient areas; therefore, removing noise
in other areas is an additional problem. Hence, we moved towards principal component
analysis (PCA) [16,35], sparse learning, and the MVSNN, optimizing the weights through
associated algorithms to enhance image resolution over the training epochs. In the DL part,
we addressed the performance of the SR-CNN [25] and GAN [26] for extracting hierarchical
features. Enabling end-to-end learning simplifies development, ensuring adaptability to
diverse WSI SR scenarios.

4.2. Architecture of Super-Resolution Generative Adversarial Networks

Our SRGAN model as shown in Figure 3 is similar to common GAN architectures,
consisting of a generator and discriminator. The generator takes the LR histopathological
image as the input and employs residual network [31] architectures, which include convo-
lutional functions and skip connections to generate fake (noisy) images. Simultaneously,
the discriminator is equipped with binary classifiers, which evaluate the generated images
against the ground truth images. Images with high similarity undergo up-scaling (up to
4×), while LR images prompt feedback loops between the generator and discriminator.
The ultimate output is an SR pathological image. This SR technique is extended to mi-
croscopic and WSIs in the pathology domain, emphasizing the role of evaluation metrics.
Microscopic images are vital to pathologists in diagnosis and demand the preservation
of fine details at the cellular level, including contrast and luminance. SR techniques are
integral to DP diagnosis and quantitatively assess image quality, ensuring accurate rep-
resentation of critical details at the cellular level and in textual content, addressing the
specific demands of these specialized domains.

The SRGAN model is trained on LR images, which the form training dataset, to learn
transformations such as interpolation. They aim to approximate missing high-frequency
information in HR images by mapping LR to HR images, capturing the patterns required
for HR images.

IHR = SR(ILR)

where ILR : LR image

IHR : HR image

(11)

SRGAN’s Architecture Mathematical Modeling

Convolution: Iout = Iin∗K (12)

where K is the convolutional kernel filter.

Activation: I′out = ReLU(Iin ∗ K) (13)

I′out = ReLU(Iout) (14)

Residual Learning: I′′out = Iin + F ∗ (Iin) (15)
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where F ∗ (Iin) represents the residual block.

Loss Function: L =
1
N

N

∑
i=0

(
Ii
HR − SR ·

(
Ii
HR

)2
)

(16)

where N is the number of training examples,
Ii
HR is the ground truth HR image, and

SR ·
(

Ii
HR
)2 is the predicted HR image for the ith example.

Figure 3. The architecture of the generator (G) and discriminator (D) modules in the SRGAN.

4.3. Dataset Details

In this paper, we are evaluating the SR methods on prostate cancer histopathological
images in the dataset https://data.mendeley.com/datasets/9xxm58dvs3/1 (accessed on 30
April 2024) from Mendeley Data [36], comprising 18,783 annotated images across six classes
and having 4417, 925, 2471, 3082, 2234, and 5654 patches in Gleason grade (GG) 0, GG 1, GG
2, GG 3, GG 4, and GG 5, respectively. The categorization of prostate cancer into the Gleason
grade groups relies on the Gleason scores, which assess the patterns observed in prostate
WSIs. Chen et al. [37] comprehensively demonstrated the calculation and classification of
these groups. Patches extracted at 10x magnification with a 512-pixel size and 50% overlap
underwent preprocessing for noise reduction, color correction, and contrast enhancement,
ensuring readiness for analysis. Assessing image quality feasibility for training and testing
relies on baseline models. Notably, the pathological images in the dataset adhere to a
resolution of 512 × 512 pixels. Figure 4 shows examples of some patches.

https://data.mendeley.com/datasets/9xxm58dvs3/1
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Figure 4. Prostate histopathological images of all 5 classes based on Gleason grade grouping belong-
ing, respectively, to the classes (a) GG0 (b) GG1 (c) GG2 (d) GG3 (e) GG4 and (f) GG5.

4.4. Experimental Setup

The implementation was performed using the pytorch framework and setting the
batch size to 24; the training and testing sizes were kept at 85% & 15%, respectively, to
obtain the results. The algorithm was run on a Dell Precision Tower 5810 workstation with
a Xeon CPU, 512 GB SSD, 32 GB of RAM, and an 8 GB Quadro P4000 Nvidia GPU.

5. Evaluation Metrics

Evaluating the quality of HR images is essential to have a suitable resolution required
for the WSI classification. Zajiczek et al. [38] gave the techniques for assessing the outcomes
of SR algorithms. Zhou et al. [39] also focused on SR image quality assessment, using deter-
ministic and statistical fidelity to evaluate SR image quality. They found that SRGANs excel
in achieving high spatial fidelity, but may struggle with deterministic fidelity. Therefore,
they introduced the SR Image Fidelity index, based on content-dependent sharpness and
texture assessment, as a novel parameter for image SR assessment. The peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), root-mean-squared error, mean absolute
error and multi-scale structural similarity index are some metrics for measuring the SR
method’s outcomes. The following is a brief explanation of how these metrics estimated
based on LR and HR images:
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• Peak signal-to-noise ratio (dB): The PSNR measures image quality by comparing the
original image to the reconstructed image, with higher values indicating better quality
and higher fidelity.

PSNR(I, K) = 10 · log10

(
MAX2

MSE

)
(17)

where
I is the original image,
K is the reconstructed (or compressed) image, and
MAX is the maximum possible pixel value of the images.

• Structural similarity index: The SSIM goes further by considering not just pixel-level
differences, but also structural aspects like image similarity, considering luminance,
contrast, and structure. A higher SSIM means better similarity to the original.
The SSIM is a product of three components, luminance (l), contrast (c), and structure
(s), raised to the power of an exponent α as shown below:

SSIM(x, y) = [l(x, y) · c(x, y) · s(x, y)]α (18)

Typically, α is set to a smaller value, e.g., 1.

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(19)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(20)

s(x, y) =
σxy + C3

σxσy + C3
(21)

where

x, y are the pixel values of the images,

µx, µy are the local means of x and y, respectively,

σx, σy are the local standard deviations of x and y, respectively,

σxy is the local covariance of x and y,

C1, C2, and C3 are small constants for stability.

• Root-mean-squared error: The RMSE shows the average magnitude of the errors
between images. The root-MSE is the square root of the MSE and is used to measure
the average magnitude of the errors between the corresponding pixel values of the
original (I) and reconstructed (K) images.

RMSE(I, K) =
√

MSE(I, K) =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(I(i, j)− K(i, j))2 (22)

where

I(i, j) is the pixel value at position (i, j) in the original image,

K(i, j) is the pixel value at position (i, j) in the reconstructed image,

M, N are the dimensions of the images.
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• Mean absolute error: The MAE evaluates the error by calculating the average absolute
differences between the original and reconstructed images.

MAE(I, K) =
1

MN

M

∑
i=1

N

∑
j=1

|I(i, j)− K(i, j)| (23)

where

I(i, j) is the pixel value at position (i, j) in the original image,

K(i, j) is the pixel value at position (i, j) in the reconstructed image,

M, N are the dimensions of the images.

• Multi-scale structural similarity index: An extension of the SSIM, it assesses the
structural similarity at multiple scales.

MSSIM(I, K) =
1

MN

M

∑
i=1

N

∑
j=1

SSIM(I(i, j), K(i, j)) (24)

where

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

µx, µy are the average pixel values of x and y,

σ2
x , σ2

y are the variances of x and y,

σxy is the covariance between x and y,

C1 and C2 are constants to stabilize the division with a weak denominator.

The MSSIM measures image quality based on human perception, considering factors
like color accuracy and sharpness. It is important for assessing visual quality in biomedical
imagery.

6. Results and Discussion

Table 2 presents the results of traditional ML and the SRGAN. We have used several
metrics to comprehensively compare the outcome of super-resolution. The results show
that the SRGAN clearly outperforms and has better edge over the SR-CNN and traditional
models. We have specifically focused on the implementation of pathological images for
the various models and represent the SR metrics values for the PSNR, SSIM, MSE, RMSE,
MAE, and MSSIM.

Table 2. Performance comparison of the models on various evaluation metrics.

SR Models PSNR (↑) SSIM (↑) RMSE (↓) MAE (↓) MSSIM (↑)

Regression 23.56 0.78 0.048 0.034 0.86

Sparse Learning 24.81 0.80 0.044 0.32 0.88

PCA 22.73 0.75 0.054 0.038 0.82

Bicubic
Interpolation 21.92 0.70 0.060 0.045 0.78

MVSNN 25.36 0.82 0.039 0.029 0.90

SR-CNN 26.03 0.83 0.036 0.027 0.89

AE 26.18 0.83 0.034 0.027 0.90

SRGAN 26.47 0.85 0.035 0.026 0.92
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We can clearly see that the proposed method, SRGAN, outperformed the others by
showcasing great performance on the PSNR, SSIM, and MSSIM. Since these metrics relate
the quality and similarity indices, a higher value means a better model. There is a small
performance difference between the AE and SRGAN, possibly due to the capturing of the
spatial resolution by the convolution layers in the SRGAN. Subsequently, the SRGAN has
least values for RMSE and MAE, and lower values indicate the improvement of the methods
for SR application. By speculating about the WSI quality evaluation metrics, Table 2 helps
us to conclude that these standardized evaluation metrics reaffirm the novelty of SRGANs.
Figure 5 shows some super-resolved examples from the SRGAN and subjectively shows
that the HR images carry significantly more information than the LR ones.

Figure 5. Mapping of input LR pathological WSIs to the output super-resolution pathological images.
(a) Example of WSI; (b) super-resolution images.

7. Conclusions

The results of this comprehensive comparative study on super-resolution reconstruc-
tion techniques for prostate whole-slide images demonstrate the superior performance of
the SRGAN algorithm compared to other machine learning and deep learning methods.
The SRGAN-based super-resolution algorithm achieved outstanding results, outperforming
the other techniques across a range of evaluation metrics. Specifically, the SRGAN-based
method achieved a PSNR of 26.47, an SSIM of 0.85, an RMSE of 0.035, an MAE of 0.026,
and an MSSIM of 0.92. These results indicate that the SRGAN algorithm preserves high-
frequency details and image quality while achieving up to 4× magnification of the input
images. The application of the SRGAN provides a cost-effective solution to bridge the gap
between the high cost of high-resolution imaging equipment and the need for high-quality
pathology images. The proposed method can be used in the field of digital pathology,
offering a powerful tool to enhance the quality and utility of prostate WSIs for improved
cancer diagnosis and patient care.

8. Future Work

Future work should focus on advancing and optimizing algorithms to maximize the
impact and adoption of SRGANs in the digital pathology workflow. The progression
of image super-resolution (SR) towards black-box AI systems poses challenges, as the
complex models can be difficult for clinicians to interpret, leading to trust issues in com-
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putational pathology. To address this, integrating explainable artificial intelligence (XAI),
as highlighted in [40,41], could make the AI outputs more understandable and reliable for
clinical decision-making.

AI, particularly ML and DL techniques, holds great promise in medical imaging. AI
systems trained to identify abnormal areas in histopathology slides and enhancing slide
resolution can significantly improve the diagnostic workflow. Through intensive initial
data training, AI pre-screens slides, prioritizing them for detailed examination, which
enhances diagnostic efficiency and accuracy while minimizing observer variability. A sig-
nificant challenge in histopathology is the inter- and intra-observer variability, especially
with the Gleason score, where differences in interpreting histological patterns can lead to
inconsistent grading. AI addresses this issue by augmenting pathologists, standardizing
evaluations, and reducing subjective workload. Objective evaluation metrics ensure consis-
tent grading and better prognostic assessments. Furthermore, AI’s ability to continuously
learn from new data enhances its diagnostic capabilities over time [42,43]. Thus, future
work in SR should incorporate XAI with GANs to generate super-resolved images that
are both highly accurate and interpretable. Additionally, by focusing on the deployment
of smaller, more efficient models that can be accessed remotely, we can overcome the
challenges associated with transmitting large gigapixel images. This approach will facilitate
remote pathological evaluations by enabling the enhancement of low-resolution images
after transmission.
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