Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Instrumentation and Chromatographic Conditions
2.3. Preparation of Stock and Working Standard Solutions
2.4. Preparation of Sample Solution
2.5. Method Validation
2.6. Stability Studies
3. Results and Discussion
3.1. Method Development
3.2. Statistical Analysis of Data
3.2.1. Linearity
3.2.2. Accuracy and Precision
3.2.3. Stability Studies
3.3. Application to the Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 178, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Vasilaki, A.; Thermos, K. Somatostatin analogues as therapeutics in retinal disease. Pharmacol. Ther. 2009, 122, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, S.W.J.; van der Lely, A.-J.; de Herder, W.W.; Hofland, L.J. Octreotide. N. Eng. J. Med. 1996, 334, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praydayrol, L.; Jomvall, H.; Mutt, V.; Ribet, A. N-terminally extended somatostatin: The primary structure of somatostatin-28. FEBS Lett. 1980, 109, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Janecka, A.; Zubrzycka, M.; Janecki, T. Somatostatin analogs. J. Pept. Res. 2001, 58, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.G. Somatostatin and somatostatin analogues: Pharmacokinetics and pharmacodynamic effects. Gut 1994, 35, S1–S4. [Google Scholar] [CrossRef] [Green Version]
- Penman, E.; Wass, J.A.H.; Butler, M.G.; Penny, E.S.; Price, J.; Wu, P.; Rees Lesley, H. Distribution and characterisation of immunoreactive somatostatin inhuman gastrointestinal tract. Regul. Pept. 1983, 7, 53–65. [Google Scholar] [CrossRef]
- Chaudhry, R.; Singh, B.; Subhas, P. Octreotide in gastroenterology. Med. J. Armed Forces India 1997, 53, 293–294. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.; Prommer, E.E.; Mihalyo, M.; Wilcock, A. Octreotide. J. Pain Sympt. Man 2010, 40, 142–148. [Google Scholar] [CrossRef]
- Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.; Marbach, P.; Petcher, T.J.; Pless, J. SMS 201-995: A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982, 31, 1133–1140. [Google Scholar] [CrossRef]
- Pless, J.; Bauer, W.; Briner, U.; Doepfner, W.; Marbach, P.; Maurer, R.; Petcher, T.J.; Reubi, J.C.; Vonderscher, J. Chemistry and pharmacology of Sms-201-995, a long-acting octapeptide analog of somatostatin. Scand. J. Gastroenterol. Suppl. 1986, 21, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Pless, J. From somatostatin to Sandostatin: History and chemistry. Metabolism 1992, 41 (Suppl. 2), 5–6. [Google Scholar] [CrossRef]
- Lattuada, D.; Casnici, C.; Crotta, K.; Mastrotto, C.; Franco, P.; Schmid, H.A.; Marelli, O. Inhibitory effect of pasireotide and octreotide on lymphocyte activation. J. Neuroimmunol. 2007, 182, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Nurhidayat Tsukamoto, Y.; Sigit, K.; Sasaki, F. Sex differentiation of growth hormone-releasing hormone and somatostatin neurons in the mouse hypothalamus: An immunohistochemical and morphological study. Brain Res. 1999, 821, 309–321. [Google Scholar] [CrossRef]
- Kvols, L.K.; Moertel, C.G.; O’Connell, M.J.; Schutt, A.J.; Rubin, J.; Hahn, R.G. Treatment of the malignant carcinoid-syndrome Evaluation of a long-acting somatostatin analog. N. Eng. J. Med. 1986, 315, 663–666. [Google Scholar] [CrossRef]
- Di Cianni, A.; Carotenuto, A.; Brancaccio, D.; Novellino, E.; Reubi, J.C.; Beetschen, K.; Papini, A.M.; Ginanneschi, M. Novel Octreotide dicarba-analogues with high affinity and different selectivity for somatostatin receptors. J. Med. Chem. 2010, 53, 6188–6197. [Google Scholar] [CrossRef]
- Battershill, P.E.; Clissold, S.P. Octreotide: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. Drugs 1989, 38, 658–702. [Google Scholar] [CrossRef]
- Law, A.W.; Gales, M.A. Octreotide or vasopressin for bleeding esophageal varices. Ann. Pharmacother. 1997, 31, 237–238. [Google Scholar] [CrossRef]
- Borna, R.M.; Jahr, J.S.; Kmiecik, S.; Mancuso, K.F.; Kaye, A.D. Pharmacology of octreotide: Clinical implications for anesthesiologists and associated risks. Anesthesiol. Clin. 2017, 35, 327–339. [Google Scholar] [CrossRef]
- Öberg, K.; Lamberts, S.W.J. Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: Past, present and future. Endocr. Relat. Cancer 2016, 23, R551–R566. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.B.; Caballero, S.; Millard, W.J. Inhibition of IGF-I and b-FGF stimulatedgrowth of human retinal endothelial cells by the somatostatin analogue, octreotide: A potential treatment for ocular neovascularization. RegulPept 1993, 48, 267–278. [Google Scholar]
- Lamberts, S.W.J.; Hofland, L.J. Anniversaryreview: Octreotide, 40 years later. Eur. J. Endocrinol. 2019, 181, R173–R183. [Google Scholar] [CrossRef] [Green Version]
- Kouroumalis, E.; Skordilis, P.; Thermos, K.; Vasilaki, A.; Moschandrea, J.; Manousos, O.N. Treatment of hepatocellular carcinoma with octreotide: A randomised controlled study. Gut 1998, 42, 442–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, C.; Cabano, R.; De Angelis, L.C.; Bellini, T.; Calevo, M.G.; Gandullia, P.; Ramenghi, L.A. Octreotide for congenital and acquired chylothorax in newborns: A systematic review. J. Paediatr. Child. Health 2018, 54, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, O.A.; Zhang, T.; Jenkins, R.; Karnes, H.T. Determination of octreotide and assessment of matrix effects in human plasma using ultra high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Kyaterekera, N.; Tettey, J.N.A.; Skellern, G.G.; Watson, D.G.; Urie, J.; McDade, J.R.; Fielding, H. LC determination of octreotide acetate in compound formulations of Sandostatin® and diamorphine hydrochloride. J. Pharm Biomed. Anal. 1999, 21, 327–330. [Google Scholar] [CrossRef]
- Tanabe, K.; Wada, J.; Ohkubo, J.; Nitta, A.; Ikezaki, T.; Takeuchi, M.; Handa, A.; Tanaka, M.; Murakami, N.; Kashii, T.; et al. Stability of octreotide acetate decreases in a sodiumbisulfate concentration-dependent manner: Compatibility study with morphine and metoclopramide injections. Eur. J. Hosp. Pharm 2015, 22, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Tamizi, E.; Yang, Y.; Jouyban, A.; Kelso, G.F.; Boysen, R.I.; Hearn, M.T.W. A capillary electrophoretic–mass spectrometric method for the assessment of octreotide stability under stress conditions. J. Chromatogr. A 2016, 1429, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, J.; Wang, Y.; Du, X.; Zhang, Y.; Fawcett, J.P.; Gu, J. Determination of long-acting release octreotide, an octapeptide analogue of somatostation, in human plasma by liquid chromatography/tandemmass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3982–3986. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, K.C.; Na, D.H. Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 7793–7797. [Google Scholar] [CrossRef]
- Park, E.J.; Na, D.H. Optimization of octreotide PEGylation by monitoring with fast reversed-phase high-performance liquid chromatography. Anal. Biochem 2008, 380, 140–142. [Google Scholar] [CrossRef]
- Cui, L.; Yang, Z.; Li, M.; Wei, Z.; Fei, Q.; Huan, Y.; Li, H. Structural characterization of octreotide impurities by on-line electrochemistry-tandem mass spectrometry. Int. J. Mass Spectrom. 2019, 435, 18–25. [Google Scholar] [CrossRef]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef]
- Roca, L.S.; Schoemaker, S.E.; Pirok, B.W.J.; Gargano, A.F.G.; Schoenmakers, P.J. Accurate modelling of the retention behaviour of peptides in gradient-elution hydrophilic interaction liquid chromatography. J. Chromatogr. A 2020, 1614, 460650. [Google Scholar] [CrossRef] [PubMed]
- Giannakou, M.; Varvaresou, A.; Kiriazopoulos, E.; Papageorgiou, S.; Kavvalou, E.; Tsirivas, E.; Panderi, I. Quantification of oligopeptide-20 and oligopeptide-24 in cosmetic creams using hydrophilic interaction liquid chromatography with electrospray ionization mass spectrometry, Sep. Sci. Plus 2018, 1, 159–167. [Google Scholar] [CrossRef]
- Raikou, V.; Kalogria, E.; Varvaresou, A.; Tsirivas, E.; Panderi, I. Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. Separations 2021, 8, 125. [Google Scholar] [CrossRef]
- Johnsen, E.; Leknes, S.; Wilson, S.R.; Lundanes, E. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction. Sci. Report 2015, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machairas, G.; Panderi, I.; Geballa-Koukoula, A.; Rozou, S.; Antonopoulos, N.; Charitos, C.; Vonaparti, A. Development and validation of a hydrophilic interaction liquid chromatography method for the quantitation of impurities in fixed-dose combination tablets containing rosuvastatin and metformin. Talanta 2018, 183, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim Acta 2011, 692, 1–25. [Google Scholar] [CrossRef]
- Cesla, P.; Vanková, N.; Krenková, J.; Fischer, J. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides. J. Chromatogr. A 2016, 1438, 179–188. [Google Scholar] [CrossRef] [Green Version]
- ICH Guideline Q2(R1) Validation of Analytical Procedures: Text and Methodology. In Proceedings of the International Con-ference on Harmonisation, London, UK, 2005. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 19 August 2021).
- British Pharmacopeia; Her Majesty’s Stationery Office: London, UK, 2004; Volume II, pp. 1428–1429.
Concentration Range (μg mL−1). | |
---|---|
Regression equation | 0.15–1.5 |
Correlation coefficient, r | S = 4.91 (±0.11) × C + 0.258 (±0.034) |
Standard error of estimation, Sr | 0.998 |
Limit of Detection, LOD (μg mL−1) | 0.18 |
Limit of Quantitation, LOQ (μg mL−1) | 0.02 |
Parameters | Concentration Levels (μg mL−1) | ||
---|---|---|---|
Added Concentration | 0.15 | 1.0 | 1.5 |
Overall mean | 0.1494 (±0.0004) | 1.045 (±0.003) | 1.471 (±0.005) |
Intra-day, CV (%) 1 | 0.95 | 1.11 | 1.28 |
Total precision, CV (%) 1 | 0.99 | 0.95 | 1.15 |
Total accuracy, | |||
Relative recovery (%) 2 | 99.6 | 104.5 | 98.1 |
Octreotide Injection Form | % Label Claim (±SD) 1 (n=5) | % CV 2 | %Recovery (±SD) 1 (n=5) |
---|---|---|---|
Batch No 1 | 0.00163 (±0.00076) | 0.75 | 101.63 (±0.76) |
Batch No 2 | 0.10137 (±0.00087) | 0.86 | 101.37 (±0.87) |
Batch No 3 | 0.1009 (±0.0011) | 1.1 | 100.9 (±1.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doulou, E.; Kalomiraki, M.; Parla, A.; Thermos, K.; Chaniotakis, N.A.; Panderi, I. Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. Analytica 2021, 2, 121-129. https://doi.org/10.3390/analytica2040012
Doulou E, Kalomiraki M, Parla A, Thermos K, Chaniotakis NA, Panderi I. Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. Analytica. 2021; 2(4):121-129. https://doi.org/10.3390/analytica2040012
Chicago/Turabian StyleDoulou, Eleni, Marina Kalomiraki, Anthi Parla, Kyriaki Thermos, Nikos A. Chaniotakis, and Irene Panderi. 2021. "Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms" Analytica 2, no. 4: 121-129. https://doi.org/10.3390/analytica2040012
APA StyleDoulou, E., Kalomiraki, M., Parla, A., Thermos, K., Chaniotakis, N. A., & Panderi, I. (2021). Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. Analytica, 2(4), 121-129. https://doi.org/10.3390/analytica2040012