Identification of Less Harmful Pesticides against Honey Bees: Shape-Based Similarity Analysis †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassani, A.K.; Dacher, M.; Gary, V.; Lambin, M.; Gauthier, M.; Armengaud, C. Effects of Sublethal Doses of Acetamiprid and Thiamethoxam on the Behavior of the Honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol. 2008, 54, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Claudianos, C.; Ranson, H.; Johnson, R.M.; Biswas, S.; Schuler, M.A.; Berenbaum, M.R.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 2006, 15, 615–636. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides—Properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res. 2019, 26, 34723–34740. [Google Scholar] [CrossRef]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Petric, M.; Crisan, L.; Crisan, M.; Micle, A.; Maranescu, B.; Ilia, G. Synthesis and QSRR Study for a Series of Phosphoramidic Acid Derivatives. Heteroatom. Chem. 2013, 24, 138–145. [Google Scholar] [CrossRef]
- Goodarzi, M.; Bora, A.; Borota, A.; Funar-Timofei, S.; Avram, S.; Heyden, Y.V. Modeling of 2-pyridin-3-yl-benzo[d][1,3]oxazin-4-one derivatives by several conformational searching tools and molecular docking. Curr. Pharm Des. 2013, 19, 2194–2203. [Google Scholar] [CrossRef]
- Funar-Timofei, S.; Borota, A.; Crisan, L. Combined molecular docking and QSAR study of fused heterocyclic herbicide inhibitors of D1 protein in photosystem II of plants. Mol. Divers. 2017, 21, 437–454. [Google Scholar] [CrossRef]
- Hawkins, P.C.D.; Skillman, A.G.; Nicholls, A. Comparison of Shape-Matching and Docking as Virtual Screening Tools. J. Med. Chem. 2007, 50, 74–82. [Google Scholar] [CrossRef]
- Rush, T.S.; Grant, J.A.; Mosyak, L.; Nicholls, A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein—Protein interaction. J. Med. Chem. 2005, 48, 1489–1495. [Google Scholar] [CrossRef]
- Hou, S.; Zhuang, Y.; Deng, Y.; Xu, X. Photostability study of cis-configuration neonicotinoid insecticide cycloxaprid in water. J. Environ. Sci. Health B 2017, 52, 525–537. [Google Scholar] [CrossRef]
- Zou, M.; Tian, X.; Chen, N.; Shao, X. Nematicidal Activity of Sprio and Bridged Heterocyclic Neonicotinoid Analogues against Meloidogyne incognita. Lett. Drug Des. Discov. 2015, 12, 439–445. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, J.; Xu, X.; Wang, H.; Wang, W.; Ye, Q.; Li, Z. Diastereoselective Metabolism of a Novel Cis-Nitromethylene Neonicotinoid Paichongding in Aerobic Soils. Environ. Sci. Technol. 2013, 47, 10389–10396. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, X.; Zhang, Q.; Fan, J.; Liu, L.; Liu, M.; Zhang, H.; Li, J.; Guo, Y. Iodine-mediated oxidative cyclization for one pot synthesis of new 8- hydroxyquinaldine derivatives containing a N-phenylpyrazole moiety as pesticidal agents. Bioorg. Med. Chem. Lett. 2018, 28, 3376–3380. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Bao, Y.; Ma, Q.; Xu, H. Synthesis and biological activities of novel pyrazolomatrine derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 3338–3341. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Gu, H.; Bao, N.; Dai, H. Design, Synthesis, and Biological Activities of Novel Pyrazole Oxime Compounds Containing a Substituted Pyridyl Moiety. Molecules 2017, 22, 878. [Google Scholar] [CrossRef]
- Jeanmart, S.; Edmunds, A.J.F.; Lamberth, C.; Pouliot, M. Synthetic approaches to the 2010–2014 new agrochemicals. Bioorg. Med. Chem. 2016, 24, 317–341. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, Y.; Li, W.; Li, Q.; Luo, P.; Ye, Q. Nonstereoselective foliar absorption and translocation of cycloxaprid, a novel chiral neonicotinoid, in Chinese cabbage. Environ. Pollut. 2019, 252, 1593–1598. [Google Scholar] [CrossRef]
- Sun, C.W.; Wang, J.; Wu, Y.; Nan, S.B.; Zhang, W.G. Novel nitenpyram analogues with tetrahydropyridone fixed cis-configuration: Synthesis, insecticidal activities, and molecular docking studies. Heterocycles 2013, 87, 1865–1880. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Kuriyama, M.; Nagaoka, H.; Kato, A.; Akamatsu, M.; Yamauchi, S.; Shuto, Y. Synthesis of imidacloprid derivatives with a chiral alkylated imidazolidine ring and evaluation of their insecticidal activity and affinity to the nicotinic acetylcholine receptor. Bioorg. Med. Chem. 2012, 20, 6305–6312. [Google Scholar] [CrossRef]
- Jiang, D.; Zheng, X.; Shao, G.; Ling, Z.; Xu, H. Discovery of a Novel Series of Phenyl Pyrazole Inner Salts Based on Fipronil as Potential Dual-Target Insecticides. J. Agric. Food Chem. 2014, 62, 3577–3583. [Google Scholar] [CrossRef]
- Liu, S.H.; Peng, W.; Qu, Y.Y.; Xu, D.; Li, H.Y.; Song, D.L.; Duan, H.X.; Yang, X.L. Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group. Chin. Chem. Lett. 2014, 25, 1017–1020. [Google Scholar] [CrossRef]
- Hua, X.; Mao, W.; Fan, Z.; Ji, X.; Li, F.; Zong, G.; Song, H.; Li, J.; Zhou, L.; Zhou, L.; et al. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation. Aust. J. Chem. 2014, 67, 1491–1503. [Google Scholar] [CrossRef]
- Shen, H.F.; Chen, X.; Liao, P.; Shao, X.S.; Li, Z.; Xu, X.Y. Design, synthesis, and insecticidal bioactivities evaluation of pyrrole- and dihydropyrrole-fused neonicotinoid analogs containing chlorothiazole ring. Chin. Chem. Lett. 2015, 3245, 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Hua, X.; Wan, Y.; Wei, W.; Song, H.; Yu, S.; Zhang, X.; Li, Z. Design, synthesis, antifungal activities and SARs of (R)-2-Aryl-4,5-dihydrothiazole-4-carboxylic acid derivatives. Chin. J. Chem. 2015, 33, 1269–1275. [Google Scholar] [CrossRef]
- He, Y.; Hu, D.; Lv, M.; Jin, L.; Wu, J.; Zeng, S.; Yang, S.; Song, B. Synthesis, insecticidal, and antibacterial activities of novel neonicotinoid analogs with dihydropyridine. Chem. Cent. J. 2013, 7, 76. [Google Scholar] [CrossRef]
- Hawkins, P.C.D.; Nicholls, A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 2012, 52, 2919–2936. [Google Scholar] [CrossRef]
- Muchmore, S.W.; Debe, D.A.; Metz, J.T.; Brown, S.P.; Martin, Y.C.; Hajduk, P.J. Application of Belief Theory to Similarity Data Fusion for Use in Analog Searching and Lead Hopping J. Chem. Inf. Model. 2008, 48, 941–948. [Google Scholar] [CrossRef]
- Bortolato, A.; Perruccio, F.; Moro, S. Successful Applications of In Silico Approaches for Lead/drug Discovery; Miteva, M.A., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011. [Google Scholar]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Laurino, D.; Porporato, M.; Patetta, A.; Manino, A. Toxicity of neonicotinoid insecticides to honey bees: Laboratory tests. Bull. Insectol. 2011, 64, 107–113. [Google Scholar]
- Brandt, A.; Hohnheiser, B.; Sgolastra, F.; Bosch, J.; Meixner, M.D.; Büchler, R. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
Thiacloprid | Acetamiprid | I | II | III | IV | ||
---|---|---|---|---|---|---|---|
Molecule properties: | MW | 252.73 | 222.679 | 195.653 | 225.679 | 288.681 | 263.772 |
LogP | 2.12088 | 2.06628 | 1.5789 | 0.6652 | 2.2428 | 2.7338 | |
#RBN | 2 | 2 | 2 | 3 | 5 | 2 | |
#Acceptors | 4 | 3 | 3 | 4 | 4 | 3 | |
#Donors | 0 | 0 | 0 | 1 | 0 | 0 | |
Surface Area | 102.944 | 93.827 | 82.063 | 93.244 | 113.179 | 113.057 | |
Toxicity | Max. tolerated dose (human) MRTD (log mg/kg/day) | 0.488 | 0.766 | 0.555 | 0.1 | 0.304 | 0.192 |
hERG I inhibitor | No | No | No | No | No | No | |
hERG II inhibitor | No | No | No | No | No | No | |
Oral Rat Acute Toxicity (LD50) | 3.085 | 2.906 | 2.675 | 2.793 | 2.969 | 2.864 | |
Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) | 0.699 | 0.795 | 0.904 | 1.186 | 1.567 | 0.877 | |
Hepatotoxicity | Yes | Yes | Yes | Yes | No | Yes | |
Skin Sensitization | No | No | Yes | No | No | No | |
T. Pyriformis toxicity pIGC50 (log ug/L) | 1.132 | 0.986 | 0.869 | 0.026 | 0.807 | 1.025 | |
Minnow toxicity LC50 (log mM) | 1.441 | 1.566 | 2.072 | 2.601 | 1.892 | 1.568 | |
Distribution | VDss (human) (LogL/kg) | −0.134 | −0.217 | 0.161 | 0.749 | −0.074 | 0.475 |
Fraction unbound (human) | 0.486 | 0.507 | 0.576 | 0.897 | 0.507 | 0.444 | |
BBB permeability (log BB) | 0.114 | 0.132 | 0.192 | −0.264 | 0.289 | 0.593 | |
CNS permeability (logPS) | −2.922 | −2.867 | −3.199 | −3.442 | −3.688 | −3.475 | |
Excretion | Total Clearance (log mL/min/kg) | 0.201 | 0.193 | 0.489 | 0.9 | 0.484 | 0.203 |
Renal OCT2 substrate | No | No | No | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisan, L.; Borota, A.; Funar-Timofei, S.; Bora, A. Identification of Less Harmful Pesticides against Honey Bees: Shape-Based Similarity Analysis. Chem. Proc. 2021, 3, 22. https://doi.org/10.3390/ecsoc-24-08342
Crisan L, Borota A, Funar-Timofei S, Bora A. Identification of Less Harmful Pesticides against Honey Bees: Shape-Based Similarity Analysis. Chemistry Proceedings. 2021; 3(1):22. https://doi.org/10.3390/ecsoc-24-08342
Chicago/Turabian StyleCrisan, Luminita, Ana Borota, Simona Funar-Timofei, and Alina Bora. 2021. "Identification of Less Harmful Pesticides against Honey Bees: Shape-Based Similarity Analysis" Chemistry Proceedings 3, no. 1: 22. https://doi.org/10.3390/ecsoc-24-08342
APA StyleCrisan, L., Borota, A., Funar-Timofei, S., & Bora, A. (2021). Identification of Less Harmful Pesticides against Honey Bees: Shape-Based Similarity Analysis. Chemistry Proceedings, 3(1), 22. https://doi.org/10.3390/ecsoc-24-08342