Synthesis and Photophysical Characterization of 2′-Aminochalcones †
Abstract
:1. Introduction
2. Experimental
2.1. General Procedure for the Synthesis of 2′-Aminochalcones 2a–c
2.1.1. (E)-1-(2-aminophenyl)-3-(4-methylphenyl)prop-2-en-1-one (2a)
2.1.2. (E)-1-(2-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2b)
2.1.3. (E)-1-(2-aminophenyl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one (2c)
2.2. General Procedure for the Synthesis of 2′-(methanesulfonylamino)chalcones 3a–c
2.2.1. (E)-N-{2-[3-(4-methylphenyl)acryloyl]phenyl}methanesulfonamide (3a)
2.2.2. (E)-N-{2-[3-(4-methoxyphenyl)acryloyl]phenyl}methanesulfonamide (3b)
2.2.3. (E)-N-{2-[3-(4-(dimethylamino)phenyl)acryloyl]phenyl}methanesulfonamide (3c)
2.3. General Procedure for the Synthesis of 2′-(Acetylamino)Chalcones 4a–c
2.3.1. (E)-N-{2-[3-(4-methylphenyl)acryloyl]phenyl}acetamide (4a)
2.3.2. (E)-N-{2-[3-(4-methoxyphenyl)acryloyl]phenyl}acetamide (4b)
2.3.3. (E)-N-{2-[3-(4-(dimethylamino)phenyl)acryloyl]phenyl}acetamide (4c)
2.4. Photophysical Characterization of 2′-aminochalcones 2, 3 and 4
3. Results and Discussion
3.1. Synthesis
3.2. Photophysical Study of 2′-Aminochalcones 2, 3 and 4
4. Conclusions
Acknowledgments
References
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, V. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem. 2017, 137, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.B.; Mahajan, S.K.; Katti, S.A. Chalcone: A Versatile Molecule. J. Pharm. Sci. Res. 2009, 1, 11–22. [Google Scholar]
- Custodio, J.M.F.; Gotardo, F.; Vaz, W.F.; D’Oliveira, G.D.C.; de Almeida, L.R.; Fonseca, R.D.; Cocca, L.H.Z.; Perez, C.N.; Oliver, A.G.; de Boni, L.; et al. Benzenesulfonyl incorporated chalcones: Synthesis, structural and optical properties. J. Mol. Struct. 2020, 1208, 127845. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Huang, S.-S.; Lee, M.-M.; Deng, J.-S.; Huang, G.-J. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 2015, 25, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem. 2016, 24, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Satyanandam, R.S.; Swaroopini, T.S.; Lakshmi, T.N.; Jaha, S.K.; Zaheera, S. Naga Lakshmi. Med. Chem. Res. 2013, 22, 2840–2846. [Google Scholar] [CrossRef]
- Custodio, J.M.F.; Michelini, L.J.; de Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.V.L.; Barreto, F.S.; Filho, M.O.M.; Pereza, C.N.; Napolitano, H.B. Structural insights into a novel anticancer sulfonamide chalcone. New J. Chem. 2018, 42, 3426–3434. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Zhou, Y.; Flavin, M.T.; Zhou, L.-M.; Nie, W.; Chen, F.-C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem. 2002, 10, 2795–2802. [Google Scholar] [CrossRef]
- Boeck, P.; Falcao, C.A.B.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem. 2006, 14, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016, 148, 154–172. [Google Scholar] [CrossRef] [PubMed]
- Sulpizio, C.; Roller, A.; Giester, G.; Rompel, A. Synthesis, structure, and antioxidant activity of methoxy- and hydroxyl-substituted 2′-aminochalcones. Mon. Chem. 2016, 147, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Pati, H.N.; Holt, H.L., Jr.; LeBlanc, R.; Dickson, J.; Stewart, M.; Brown, T.; Lee, M. Synthesis and Cytotoxic Properties of Nitro- and Aminochalcones. Med. Chem. Res. 2005, 14, 19–25. [Google Scholar] [CrossRef]
- Lazópulos, S.Q.; Svarc, F.; Sagrera, G.; Dicelio, L. Absorption and photo-stability of substituted dibenzoylmethanes and chalcones as UVA filters. Cosmetics 2018, 5, 33. [Google Scholar] [CrossRef]
- Vaz, P.A.A.M.; Rocha, J.; Silva, A.M.S.; Guieu, S. Aggregation-induced emission enhancement in halochalcones. New J. Chem. 2016, 40, 8198–8201. [Google Scholar] [CrossRef]
- Sedgeick, A.C.; Wu, L.; Han, H.; Bull, S.D.; He, X.; James, T.D.; Sessler, J.L.; Tang, V.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Li, H.; Xia, G.; Ruan, C.; Shi, Y.; Wang, H.; Jin, M.; Ding, D. A novel non-fluorescent excited state intramolecular proton transfer phenomenon induced by intramolecular hydrogen bonds: an experimental and theoretical investigation. Sci. Rep. 2016, 6, 19774. [Google Scholar] [CrossRef] [PubMed]
- Fontes, L.F.B.; Nunes da Silva, R.; Silva, A.M.S.; Guieu, S. Unsymmetrical 2,4,6-Triarylpyridines as Versatile Scaffolds for Deep-Blue and Dual-Emission Fluorophores. ChemPhotoChem 2020, accepted. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
Cpd | Solvent (π*) | UV/Vis | Fluorescence | |||
---|---|---|---|---|---|---|
λmax (nm) | log ε | λem (nm) | Stokes’ Shift (cm−1) | ΦF | ||
2a | Diethyl ether (0.27) | 308 | 4.58 | --- | --- | --- |
Chloroform (0.58) | 317 | 4.59 | 459 | 9759 | <0.01 | |
ACN (0.75) | 311 | 4.57 | 449 | 9883 | <0.01 | |
DMSO (1.00) | 317 | 4.57 | 460 | 9807 | <0.01 | |
2b | Diethyl ether (0.27) | 324 | 4.51 | --- | --- | --- |
Chloroform (0.58) | 333 | 4.51 | 455 | 8052 | <0.01 | |
ACN (0.75) | 327 | 4.52 | 448 | 8260 | <0.01 | |
DMSO (1.00) | 335 | 4.52 | 454 | 7824 | <0.01 | |
2c | Diethyl ether (0.27) | 404 | 4.58 | 493 | 4468 | <0.01 |
Chloroform (0.58) | 418 | 4.59 | 497/532 | 3803/5126 | 0.03 | |
ACN (0.75) | 418 | 4.57 | 540 | 5405 | 0.03 | |
DMSO (1.00) | 429 | 4.58 | 540 | 4792 | 0.03 | |
3a | Diethyl ether (0.27) | 329 | 4.57 | 417/441 | 6414/7719 | <0.01 |
Chloroform (0.58) | 336 | 4.56 | 440 | 7035 | <0.01 | |
ACN (0.75) | 333 | 4.59 | 438 | 7199 | <0.01 | |
DMSO (1.00) | 332 | 4.58 | 413/438 | 5907/7289 | <0.01 | |
3b | Diethyl ether (0.27) | 354 | 4.53 | --- | --- | --- |
Chloroform (0.58) | 361 | 4.57 | 454 | 5674 | <0.01 | |
ACN (0.75) | 358 | 4.50 | 445 | 5461 | <0.01 | |
DMSO (1.00) | 363 | 4.52 | 455 | 5570 | <0.01 | |
3c | Diethyl ether (0.27) | 424 | 4.62 | --- | --- | --- |
Chloroform (0.58) | 439 | 4.66 | 535 | 4087 | 0.10 | |
ACN (0.75) | 437 | 4.60 | 561 | 5058 | 0.10 | |
DMSO (1.00) | 445 | 4.61 | 557 | 4519 | 0.11 | |
4a | Diethyl ether (0.27) | 325 | 4.51 | --- | --- | --- |
Chloroform (0.58) | 334 | 4.49 | 440 | 7213 | <0.01 | |
ACN (0.75) | 326 | 4.49 | 432 | 7527 | <0.01 | |
DMSO (1.00) | 327 | 4.50 | 458 | 8747 | <0.01 | |
4b | Diethyl ether (0.27) | 349 | 4.53 | --- | --- | --- |
Chloroform (0.58) | 359 | 4.54 | 437 | 4972 | <0.01 | |
ACN (0.75) | 352 | 4.51 | 431 | 5207 | <0.01 | |
DMSO (1.00) | 352 | 4.52 | 437 | 5526 | <0.01 | |
4c | Diethyl ether (0.27) | 417 | 4.59 | 492 | 3656 | <0.01 |
Chloroform (0.58) | 432 | 4.61 | 553 | 5065 | 0.32 | |
ACN (0.75) | 428 | 4.60 | 556 | 5379 | 0.35 | |
DMSO (1.00) | 437 | 4.60 | 558 | 4962 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, C.I.C.; Fontes, L.F.B.; Borges, A.F.N.; Rocha, J.; Silva, A.M.S.; Guieu, S. Synthesis and Photophysical Characterization of 2′-Aminochalcones. Chem. Proc. 2021, 3, 29. https://doi.org/10.3390/ecsoc-24-08301
Esteves CIC, Fontes LFB, Borges AFN, Rocha J, Silva AMS, Guieu S. Synthesis and Photophysical Characterization of 2′-Aminochalcones. Chemistry Proceedings. 2021; 3(1):29. https://doi.org/10.3390/ecsoc-24-08301
Chicago/Turabian StyleEsteves, Cátia I. C., Luís F. B. Fontes, A. Filipa N. Borges, João Rocha, Artur M. S. Silva, and Samuel Guieu. 2021. "Synthesis and Photophysical Characterization of 2′-Aminochalcones" Chemistry Proceedings 3, no. 1: 29. https://doi.org/10.3390/ecsoc-24-08301
APA StyleEsteves, C. I. C., Fontes, L. F. B., Borges, A. F. N., Rocha, J., Silva, A. M. S., & Guieu, S. (2021). Synthesis and Photophysical Characterization of 2′-Aminochalcones. Chemistry Proceedings, 3(1), 29. https://doi.org/10.3390/ecsoc-24-08301