Lactamomethylation of Phenols: Synthesis, In Silico Study of Reactivity and Possible Applications †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Quantum-Chemical Calculations
3.2. Synthesis of the Target Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, G.W.; Ingold, K.U. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981, 103, 6472–6477. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Hamid, S.B.A.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Yagunov, S.E.; Kholshin, S.V. One-stage synthesis of 4-[(dodecylselanyl)methyl]-2,6-dimethylphenol based on the tandem reaction between 2,6-dimethylphenol, formaldehyde, and dodecaneselenol. Russ. Chem. Bull. Int. Ed. 2019, 68, 1125–1126. [Google Scholar] [CrossRef]
- Wang, W.; Kannan, P.; Xue, J.; Kannan, K. Synthetic phenolic antioxidants, including butylated hydroxytoluene (BHT), in resin-based dental sealants. Environ. Res. 2016, 151, 339–343. [Google Scholar] [CrossRef]
- Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225. [Google Scholar] [CrossRef]
- Nieto, G. Biological activities of three essential oils of the lamiaceae family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Elnesr, S.S. A review on the beneficial effect of thymol on health and production of fish. Rev. Aquac. 2021, 13, 632–641. [Google Scholar] [CrossRef]
- Osipova, V.; Antonova, N.; Berberova, N.; Poddel’skii, A.; Kudryavtsev, K. Redox properties of novel pyrrolidine derivatives containing sterically hindered phenol fragment. Russ. J. Electrochem. 2011, 47, 1119. [Google Scholar] [CrossRef]
- Koshelev, V.; Kelarev, V.; Belov, N. Effect of azoles and sym-triazines with hindered phenol fragments on protective properties of turbine oils. Chem. Technol. Fuels Oils 1995, 31, 26–29. [Google Scholar] [CrossRef]
- Koshelev, V.N.; Golubeva, I.A.; Klinaeva, E.V.; Kelarev, V.I. Stabilization of ecologically clean diesel fuel by means of combinations of additives. Chem. Technol. Fuels Oils 1996, 32, 189–194. [Google Scholar] [CrossRef]
- Latyuk, V.; Kelarev, V.; Koshelev, V.; Korenev, K. Sulfides of the sym—Triazine series as oil—Soluble corrosion inhibitors. Chem. Technol. Fuels Oils 2002, 38, 312–315. [Google Scholar] [CrossRef]
- Hidaka, T.; Hosoe, K.; Yamashita, T.; Watanabe, K.; Hiramatsu, Y.; Fujimura, H. Analgesic and anti-inflammatory activities in rats of α-(3,5-di-t-butyl-4-hydroxybenzylidene)-γ-butyrolactone (KME-4), and its intestinal damage. J. Pharm. Pharmacol. 1986, 38, 748–753. [Google Scholar] [CrossRef]
- Katayama, K.; Shirota, H.; Kobayashi, S.; Terato, K.; Ikuta, H.; Yamatsu, I. In vitro effect of N-methoxy-3-(3, 5-ditert-butyl-4-hydroxybenzylidene)-2-pyrrolidone (E-5110), a novel nonsteroidal anti-inflammatory agent, on generation of some inflammatory mediators. Agents Actions 1987, 21, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Gouliaev, A.H.; Senning, A. Piracetam and other structurally related nootropics. Brain Res. Rev. 1994, 19, 180–222. [Google Scholar] [CrossRef]
- Berestovitskaya, V.M.; Vasil’eva, O.S.; Ostroglyadov, E.S.; Aleksandrova, S.M.; Tyurenkov, I.N.; Merkushenkova, O.V.; Bagmetova, V.V. Synthesis and neuropsychotropic activity of indole-containing gamma-aminobutyric acid derivatives. Pharm. Chem. J. 2018, 52, 392–396. [Google Scholar] [CrossRef]
- Deshpande, L.; DeLorenzo, R. Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front. Neurol. 2014, 5, 11. [Google Scholar] [CrossRef]
- Malykh, A.G.; Sadaie, M.R. Piracetam and Piracetam-Like Drugs. Drugs 2010, 70, 287–312. [Google Scholar] [CrossRef]
- Vorobyev, S.V.; Primerova, O.V.; Koshelev, V.N.; Ivanova, L.V. Synthesis of alkylphenols lactamomethyl derivatives. Butl. Commun. 2018, 54, 124–131. (In Russian) [Google Scholar]
- Negrebetsky, V.V.; Vorobyev, S.V.; Kramarova, E.P.; Shipov, A.G.; Shmigol, T.A.; Baukov, Y.I.; Lagunin, A.A.; Korlyukov, A.A.; Arkhipov, D.E. Lactamomethyl derivatives of diphenols: Synthesis, structure, and potential biological activity. Russ. Chem. Bull. Int. Ed. 2018, 67, 1518–1529. [Google Scholar] [CrossRef]
- Vorobyev, S.V.; Primerova, O.V.; Ivanova, L.V.; Ryabov, V.D.; Koshelev, V.N. Facile synthesis of phenolic derivatives, containing lactamomethyl substituents. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (Russ. J. Chem. Chem. Technol.) 2019, 62, 40–48. [Google Scholar] [CrossRef]
- Barry, J.; Mayeda, E.; Ross, S. The amidoalkylation of aromatic hydrocarbons. Tetrahedron 1976, 33, 369–372. [Google Scholar] [CrossRef]
- Shen, A.-Y.; Huang, M.-H.; Liao, L.-F.; Wang, T.-S. Thymol analogues with antioxidant and L-Type calcium current inhibitory activity. Drug Dev. Res. 2005, 64, 195–202. [Google Scholar] [CrossRef]
- Inci Gul, H.; Yamali, C.; Yasa, A.T.; Unluer, E.; Sakagami, H.; Tanc, M.; Supuran, C.T. Carbonic anhydrase inhibition and cytotoxicity studies of Mannich base derivatives of thymol. J. Enzym. Inhib. Med. Chem. 2016, 31, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Vasil’ev, R.F.; Fedorova, G.F.; Trofimov, A.V.; Kancheva, V.D.; Batovska, D.I. Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinet. Catal. 2010, 51, 507–515. [Google Scholar] [CrossRef]
- Vorobyev, S.V.; Primerova, O.V.; Ivanova, L.V.; Koshelev, V.N.; Ryabov, V.D. Synthesis and antioxidant activity of phenolic derivatives with heterocycles fragments. Proc. Gubkin Russ. State Univ. Oil Gas 2018, 3, 221–230. (In Russian) [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Wallingford CT.; Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Compound | D(ArO-H), kcal/mol |
---|---|
Thymol | 82.0 |
2,4-di-tert-butylphenol | 82.5 |
1 | 82.8 |
2 | 83.2 |
3 | 88.9 |
4 | 82.6 |
5 | 78.8 |
6 | 78.5 |
7 | 78.7 |
8 | 78.9 |
butylated hydroxytoluene (BHT) | 75.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorobyev, S.; Primerova, O.; Koshelev, V. Lactamomethylation of Phenols: Synthesis, In Silico Study of Reactivity and Possible Applications. Chem. Proc. 2021, 3, 81. https://doi.org/10.3390/ecsoc-24-08408
Vorobyev S, Primerova O, Koshelev V. Lactamomethylation of Phenols: Synthesis, In Silico Study of Reactivity and Possible Applications. Chemistry Proceedings. 2021; 3(1):81. https://doi.org/10.3390/ecsoc-24-08408
Chicago/Turabian StyleVorobyev, Stepan, Olga Primerova, and Vladimir Koshelev. 2021. "Lactamomethylation of Phenols: Synthesis, In Silico Study of Reactivity and Possible Applications" Chemistry Proceedings 3, no. 1: 81. https://doi.org/10.3390/ecsoc-24-08408
APA StyleVorobyev, S., Primerova, O., & Koshelev, V. (2021). Lactamomethylation of Phenols: Synthesis, In Silico Study of Reactivity and Possible Applications. Chemistry Proceedings, 3(1), 81. https://doi.org/10.3390/ecsoc-24-08408