ZnFe2O4@dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives †
Abstract
:1. Introduction
2. Experimental
2.1. General
2.2. Preparation of the ZnFe2O4@dimethylglyoxime
2.3. General Procedure for the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives Derivatives
3. Results and Discussion
3.1. Characterization of Catalyst
3.2. Catalytic Application of ZnFe2O4@dimethylglyoxime in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives
4. Conclusions
Funding
References
- Aisida, S.O.; Ahmad, I.; Zhao, T.K.; Maaza, M.; Ezema, F.I. Calcination Effect on the Photoluminescence, Optical, Structural, and Magnetic Properties of Polyvinyl Alcohol Doped ZnFe2O4 Nanoparticles. J. Macromol. Sci. Part B 2020, 59, 295–308. [Google Scholar] [CrossRef]
- Kumar, A.S.; Reddy, M.A.; Knorn, M.; Reiser, O.; Sreedhar, B. Magnetically Recoverable CuFe2O4 Nanoparticles: Catalyzed Synthesis of Aryl Azides and 1,4-Diaryl-1,2,3-triazoles from Boronic Acids in Water. Eur. J. Org. Chem. 2013, 2013, 4674–4680. [Google Scholar] [CrossRef]
- Maleki, A.; Varzi, Z.; Hassanzadeh-Afruzi, F. Preparation and characterization of an eco-friendly ZnFe2O4@ alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polyhedron 2019, 171, 193–202. [Google Scholar] [CrossRef]
- Andhare, D.; Jadhav, S.; Khedkar, M.; Somvanshi, S.B.; More, S.; Jadhav, K. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 2020, 46, 25576–25583. [Google Scholar]
- Chai, L.; Wang, Y.; Zhou, N.; Du, Y.; Zeng, X.; Zhou, S.; He, Q.; Wu, G. In-situ growth of core-shell ZnFe2O4@ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 2020, 581, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, W.S.; Dias, V.L.; Costa, W.M.; de Araujo Rodrigues, I.; Marques, E.P.; Sousa, A.G.; Boaventura, J.; Bezerra, C.W.; Song, C.; Zhang, J. Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: Preparation and catalytic activity towards methanol/ethanol oxidation. J. Appl. Electrochem. 2009, 39, 55–64. [Google Scholar] [CrossRef]
- Hassanloie, N.; Noroozi Pesyan, N.; Sheykhaghaei, G. Anchored Ni-dimethylglyoxime complex on Fe3O4@ SiO2 core/shell nanoparticles for the clean catalytical synthesis of dicoumarols. Appl. Organomet. Chem. 2020, 34, e5242. [Google Scholar] [CrossRef]
- Hajizadeh, Z.; Hassanzadeh-Afruzi, F.; Jelodar, D.F.; Ahghari, M.R.; Maleki, A. Cu (ii) immobilized on Fe3O4@ HNTs–tetrazole (CFHT) nanocomposite: Synthesis, characterization, investigation of its catalytic role for the 1,3 dipolar cycloaddition reaction, and antibacterial activity. RSC Adv. 2020, 10, 26467–26478. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Hassanzadeh-Afruzi, F.; Maleki, A. Synthesis and characterization of a novel and green rod-like magnetic ZnS/CuFe2O4/agar organometallic hybrid catalyst for the synthesis of biologically-active 2-amino-tetrahydro-4H-chromene-3-carbonitrile derivatives. Appl. Organomet. Chem. 2020, 34, e5949. [Google Scholar] [CrossRef]
- Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M.S. Magnetic dextrin nanobiomaterial: An organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C 2020, 109, 110502. [Google Scholar] [CrossRef] [PubMed]
- Paczkowski, I.M.; Guedes, E.P.; Mass, E.B.; de Meneses, E.W.; Marques, L.A.; Mantovani, M.S.; Russowsky, D. Synthesis of hybrid perillyl-4 H-pyrans. Cytotoxicity evaluation against hepatocellular carcinoma HepG2/C3A cell line. J. Heterocycl. Chem. 2020, 57, 2597–2614. [Google Scholar] [CrossRef]
- Liang, P.L.; Yuan, L.Y.; Deng, H.; Wang, X.C.; Wang, L.; Li, Z.J.; Shi, W.Q. Photocatalytic reduction of uranium (VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B Environ. 2020, 267, 118688. [Google Scholar] [CrossRef]
- Ponpandian, T.; Muthusubramanian, S. One-pot, catalyst-free synthesis of spirooxindole and 4 h-pyran derivatives. Synth. Commun. 2014, 44, 868–874. [Google Scholar] [CrossRef]
Melting Point (°C) | ||||||
---|---|---|---|---|---|---|
Entry | Aryl | Product | Time (min) | Yield a (%) | Observed | Literature |
1 | 4-NO2C6H4 | 4a | 3 | 96 | 180–182 | 176–182 [9] |
2 | 3,4,5-(MeO)3C6H4 | 4b | 6 | 90 | 176–178 | 175–177 [9] |
3 | 3-ClC6H4 | 4c | 6 | 92 | 228–230 | 229–232 [9] |
4 | 4-HOC6H4 | 4d | 18 | 82 | 208–209 | 208–210 [9] |
5 | 4-MeOC6H4 | 4e | 10 | 88 | 216–218 | 217–220 [13] |
6 | 2,4-Cl2C6H4 | 4f | 5 | 94 | 119–120 | 118–120 [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogari, H.; Hassanzadeh-Afruzi, F.; Maleki, A. ZnFe2O4@dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives. Chem. Proc. 2021, 3, 89. https://doi.org/10.3390/ecsoc-24-08287
Dogari H, Hassanzadeh-Afruzi F, Maleki A. ZnFe2O4@dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives. Chemistry Proceedings. 2021; 3(1):89. https://doi.org/10.3390/ecsoc-24-08287
Chicago/Turabian StyleDogari, Haniyeh, Fereshte Hassanzadeh-Afruzi, and Ali Maleki. 2021. "ZnFe2O4@dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives" Chemistry Proceedings 3, no. 1: 89. https://doi.org/10.3390/ecsoc-24-08287
APA StyleDogari, H., Hassanzadeh-Afruzi, F., & Maleki, A. (2021). ZnFe2O4@dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives. Chemistry Proceedings, 3(1), 89. https://doi.org/10.3390/ecsoc-24-08287