An Overview of Biotransformation for the Sustainability of Sweet-Tasting Proteins as Natural Sugar Replacers †
Abstract
:1. Introduction
2. Sweet-Tasting Proteins
2.1. Brazzein
2.2. Curculin
2.3. Mabinlin
2.4. Miraculin
2.5. Monellin
2.6. Thaumatin
3. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erickson, S.; Carr, J. The technological challenges of reducing the sugar content of foods. Nutr. Bull. 2020, 45, 309–314. [Google Scholar] [CrossRef]
- Stanner, S.A.; Spiro, A. Public health rationale for reducing sugar: Strategies and challenges. Nutr. Bull. 2020, 45, 253–270. [Google Scholar] [CrossRef]
- WHO. Healthy Diet. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 10 November 2021).
- Moss, M. Salt Sugar Fat: How the Food Giants Hooked Us. Proc. (Bayl. University. Med.Cent.) 2014, 27, 283. [Google Scholar]
- Andarwulan, N.; Madanijah, S.; Briawan, D.; Anwar, K.; Bararah, A.; Średnicka-Tober, D. Food Consumption Pattern and the Intake of Sugar, Salt, and Fat in the South Jakarta City—Indonesia. Nutrients 2021, 13, 1289. [Google Scholar] [CrossRef]
- Breslin, P.A.S. An evolutionary perspective on food and human taste. Curr. Biol. 2013, 23, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, E.; González, C.; Vaillant, F.; Lares, M. Stevia Derivative and its Potential Uses in Diabetic-Directed Foods. Review. J. Nutr. 2016, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cediel, G.; Reyes, M.; Da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Knüppel, A.; Shipley, M.J.; Llewellyn, C.H.; Brunner, E.J. Sugar intake from sweet food and beverages, common mental disorder and depression: Prospective findings from the Whitehall II study. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef]
- Neiers, F.; Krohn, M.; Naumer, C.; Briand, L. The Recent Development of a Sweet-Tasting Brazzein and its Potential Industrial Applications Role of Odorant Binding Protein in Drosophila melanogaster chemosensory perception View project olfactory receptor OR1A1 expressed in a mammalian inducible cell l. Sweeteners 2016, 1–20. [Google Scholar]
- Hung, C.Y.; Cheng, L.H.; Yeh, C.M. Functional expression of recombinant sweet-tasting protein brazzein by Escherichia coli and Bacillus licheniformis. Food Biotechnol. 2019, 33, 251–271. [Google Scholar] [CrossRef]
- Izawa, H.; Ota, M.; Kohmura, M.; Ariyoshi, Y. Synthesis and Characterization of the Sweet Protein Brazzein. Biopolymers 1996, 39, 95–101. [Google Scholar] [CrossRef]
- Rajan, V.; Howard, J.A. Brazzein: A Natural Sweetener. Sweeteners 2018, 17–33. [Google Scholar]
- Lee, Y.R.; Akter, S.; Lee, I.H.; Jung, Y.J.; Park, S.Y.; Cho, Y.G.; Kang, K.K.; Jung, Y.J. Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice. J. Plant Biotechnol. 2018, 45, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.J.; Kang, K.K. Stable expression and characterization of brazzein, thaumatin and miraculin genes related to sweet protein in transgenic lettuce. J. Plant Biotechnol. 2018, 45, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Behrens, M.; Meyerhof, W.; Hellfritsch, C.; Hofmann, T. Sweet and umami taste: Natural products, their chemosensory targets, and beyond. Angew. Chem. 2011, 50, 2220–2242. [Google Scholar] [CrossRef]
- Yamashita, H.; Theerasilp, S.; Aiuchi, T.; Nakaya, K.; Nakamura, Y.; Kurihara, Y. Purification and complete amino acid sequence of a new type of sweet protein with taste-modifying activity, curculin. J. Biol.l Chem. 1990, 265, 15770–15775. [Google Scholar] [CrossRef]
- Masuda, T.; Kitabatake, N. Developments in biotechnological production of sweet proteins. J. Biosci. Bioeng. 2006, 102, 375–389. [Google Scholar] [CrossRef]
- Suzuki, M.; Kurimoto, E.; Nirasawa, S.; Masuda, Y.; Hori, K.; Kurihara, Y.; Shimba, N.; Kawai, M.; Suzuki, E.I.; Kato, K. Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Lett. 2004, 573, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Nirasawa, S.; Nishino, T.; Katahira, M.; Uesugi, S.; Hu, Z.; Kurihara, Y. Structures of heat-stable and unstable homologues of the sweet protein mabinlin. The difference in the heat stability is due to replacement of a single amino acid residue. Eur. J. Biochem. 1994, 223, 989–995. [Google Scholar] [CrossRef]
- Kant, R. Sweet proteins-Potential replacement for artificial low calorie sweeteners. Nutr. J. 2005, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Xia, Q.; Yao, J.; Fu, S.; Guo, J.; Hu, X. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World J. Microbiol. Biotechnol. 2015, 31, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Theerasilp, S.; Hitotsuya, H.; Nakajo, S.; Nakaya, K.; Nakamura, Y.; Kurihara, Y. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J. Biol. Chem. 1989, 264, 6655–6659. [Google Scholar] [CrossRef]
- Hiwasa-Tanase, K.; Hirai, T.; Kato, K.; Duhita, N.; Ezura, H. From miracle fruit to transgenic tomato: Mass production of the taste-modifying protein miraculin in transgenic plants. Plant Cell Rep. 2012, 31, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, K.; Beidler, L.M. Mechanism of the action of taste-modifying protein. Nature 1969, 222, 1176–1179. [Google Scholar] [CrossRef]
- Ezura, H.; Hiwasa-Tanase, K. Mass Production of the Taste-Modifying Protein Miraculin in Transgenic Plants. Sweeteners 2018, 167–184. [Google Scholar]
- Kurihara, Y. Sweet proteins in general. Thaumatin 1994, 1–18. [Google Scholar]
- Sun, H.J.; Cui, M.L.; Ma, B.; Ezura, H. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett. 2006, 580, 620–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiwasa-Tanase, K.; Nyarubona, M.; Hirai, T.; Kato, K.; Ichikawa, T.; Ezura, H. High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep. 2011, 30, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.F.; Szczepankiewicz, O.; Thulin, E.; Linse, S.; Carey, J. Role of protein surface charge in monellin sweetness. Biochim. Biophys. Acta-Proteins Proteom. 2009, 1794, 410–420. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, Y.; Lee, J.; Oh, K.J.; Byun, M.O.; Jeong, M.J.; Bae, S.C. Stable expression of the sweet protein monellin variant MNEI in tobacco chloroplasts. Plant Biotechnol. Rep. 2012, 6, 285–295. [Google Scholar] [CrossRef]
- Kaul, T.; Subramanyam Reddy, C.; Pandey, S.; Kaul, T.; Reddy, C.; Pandey, S. Transgenics with Monellin. Sweeteners 2018, 1–12. [Google Scholar]
- Peñarrubia, L.; Kim, R.; Giovannoni, J.; Kim, S.H.; Fischer, R.L. Production of the sweet protein monellin in transgetic plants. Bio. Technol. 1992, 10, 561–564. [Google Scholar] [CrossRef]
- Reddy, C.S.; Vijayalakshmi, M.; Kaul, T.; Islam, T.; Reddy, M.K. Improving Flavour and Quality of Tomatoes by Expression of Synthetic Gene Encoding Sweet Protein Monellin. Mol. Biotechnol. 2015, 57, 448–453. [Google Scholar] [CrossRef]
- Liu, J.; Yan, D.; Zhao, S. Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae. J. Sci. Food Agric. 2015, 95, 2646–2651. [Google Scholar] [CrossRef]
- Cai, C.; Li, L.; Lu, N.; Zheng, W.; Yang, L.; Liu, B. Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus. Biotechnol. Lett. 2016, 38, 1941–1946. [Google Scholar] [CrossRef]
- Mackenzie, A.; Pridham, J.B. Changes in the sweet proteins (thaumatins) in Thaumatococcus danielli fruits during development. Phytochem. 1985, 24, 2503–2506. [Google Scholar] [CrossRef]
- Faus, I.; Sisniega, H. Sweet-tasting proteins. Biopolymers 2003, 203–220. [Google Scholar]
- Akter, S.; Huq, M.A.; Jung, Y.J.; Kang, K.K. Expression of thaumatin, a new type of alternative sweetener in rice. Not. Bot. Horti Agrobot. I Cluj-Napoca 2020, 48, 1276–1291. [Google Scholar] [CrossRef]
- Joseph, J.A.; Akkermans, S.; Nimmegeers, P.; Van Impe, J.F.M. Bioproduction of the recombinant SWEET protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019, 10, 695. [Google Scholar] [CrossRef] [Green Version]
- Terpe, K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2006, 72, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Edens, L.; Heslinga, L.; Klok, R.; Ledeboer, A.M.; Maat, J.; Toonen, M.Y.; Visser, C.; Verrips, C.T. Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 1982, 18, 1–12. [Google Scholar] [CrossRef]
- Faus, I.; Patiño, C.; Del Río, J.L.; Del Moral, C.; Barroso, H.S.; Rubio, V. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in Escherichia coli. Biochem. Biophys. Res. Commun. 1996, 229, 121–127. [Google Scholar] [CrossRef]
- Daniell, S.; Mellits, K.H.; Faus, I.; Connerton, I. Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem. 2000, 71, 105–110. [Google Scholar] [CrossRef]
- Yeh, C.M.; Kao, B.Y.; Peng, H.J. Production of a recombinant Type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat ar frozen dough. J. Agric. Food Chem. 2009, 57, 6216–6223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, L.; Zhou, J.; Shin, H.; Chen, R.R.; Madzak, C.; Li, J.; Du, G.; Chen, J. Biosynthesis of homoeriodictyol from eriodictyol by flavone 3′-O-methyltransferase from recombinant Yarrowia lioplytica: Heterologous expression, biochemical characterization, and optimal transformation. J. Biotechnol. 2013, 167, 472–478. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, E.H. An Overview of Biotransformation for the Sustainability of Sweet-Tasting Proteins as Natural Sugar Replacers. Chem. Proc. 2022, 8, 85. https://doi.org/10.3390/ecsoc-25-11640
Yusuf EH. An Overview of Biotransformation for the Sustainability of Sweet-Tasting Proteins as Natural Sugar Replacers. Chemistry Proceedings. 2022; 8(1):85. https://doi.org/10.3390/ecsoc-25-11640
Chicago/Turabian StyleYusuf, Emel Hasan. 2022. "An Overview of Biotransformation for the Sustainability of Sweet-Tasting Proteins as Natural Sugar Replacers" Chemistry Proceedings 8, no. 1: 85. https://doi.org/10.3390/ecsoc-25-11640
APA StyleYusuf, E. H. (2022). An Overview of Biotransformation for the Sustainability of Sweet-Tasting Proteins as Natural Sugar Replacers. Chemistry Proceedings, 8(1), 85. https://doi.org/10.3390/ecsoc-25-11640