Is the Impact of Ethylammonium Nitrate on Soil Basal Respiration Modified by Addition of Aluminium Salt to Improve the Performance in Electrochemical Applications? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soils and Soil Collection Procedure
2.3. Experimental Set-Up
2.4. Analytical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greaves, T.; Drummond, C. Protic ionic liquids: Properties and applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Salgado, J.; Parajó, J.J.; Villanueva, M.; Rodríguez, J.R.; Cabeza, O.; Varela, L.M. Liquid range of ionic liquid—Metal salt mixtures for electrochemical applications. J. Chem. Thermodyn. 2019, 134, 164–174. [Google Scholar] [CrossRef]
- Biemolt, J.; Jungbacker, P.; van Teijlingen, T.; Yan, N.; Rothenberg, G. Beyond Lithium-Based Batteries. Materials 2020, 13, 425. [Google Scholar] [CrossRef] [PubMed]
- Bello, D.; Muiño, F.; García-Carballal, S.; Salgado, J.; Trasar-Cepeda, C. Modification of the method to determine dehydrogenase activity in soils spiked with 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. In Proceedings of the 20th International Electronic Conference Synthetic Organic Chemistry, Sciforum Electronic Conference Series, online, 1–31 November 2016; Seijas, J.A., Vázquez Tato, M.P., Eds.; MDPI: Basel, Switzerland, 2016; Volume 20, p. f001. [Google Scholar]
- Salgado, J.; Parajó, J.J.; Teijeira, T.; Cruz, O.; Proupín, J.; Villanueva, M.; Rodríguez-Añón, J.A.; Verdes, P.V.; Reyes, O. New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity. Chemosphere 2007, 185, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Parajó, J.J.; Macário, I.P.E.; De Gaetano, Y.; Dupont, L.; Salgado, J.; Pereira, J.L.; Gonçalves, F.J.M.; Mohamadou, A.; Ventura, S.P.M. Glycine-betaine-derived ionic liquids: Synthesis, characterization and ecotoxicological evaluation. Ecotoxicol. Environ. Saf. 2019, 184, 109580. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef]
- Fitzpatrick, E.A. Soils: Their Formation, Classification and Distribution; Longman: London, UK, 1980; 353p. [Google Scholar]
- Cihacek, L.J.; Anderson, W.L.; Barak, P.W. Methods for Assessing Soil Quality. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America—American Society of Agronomy: Madison, WI, USA, 1996; pp. 9–24. [Google Scholar]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Doran, J.; Sarrantonio, M.; Liebig, M.A. Soil health and sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar]
- Moscoso, F.; Bouzas, S.; Gil-Sotres, F.; Leirós, M.C.; Trasar-Cepeda, C. Suitability of the OECD tests to estimate contamination with 2,4-dichlorophenol of soils from Galicia (NW Spain). Sci. Total Environ. 2007, 378, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Biochemical properties of soils under crop rotation. Appl. Soil Ecol. 2008, 39, 133–143. [Google Scholar] [CrossRef]
- Schloter, M.; Dilly, O.; Munch, J.C. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 2003, 98, 255–262. [Google Scholar] [CrossRef]
- Bello, D.; Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Evaluation of various tests for the diagnosis of soil contamination by 2,4,5-trichlorophenol (2,4,5-TCP). Environ. Pollut. 2008, 156, 611–617. [Google Scholar] [CrossRef]
- Sixto, T.; Priano, M.E.; Reyes, O.; Parajó, J.J.; Salgado, J.; Trasar-Cepeda, C. Does soil organic matter affect the impact of the ionic liquid ethylammonium nitrate in the pure state and as mixture with lithium salt on basal soil respiration. Chem. Proc. 2021, 3, 93. [Google Scholar] [CrossRef]
- ISSS Working Group R.B. World Reference Base for Soil Resource. Introduction, 1st ed.; Acco: Leuven, Belgium, 1998. [Google Scholar]
- Guitián Ojea, F.; Carballas Fernández, T. Técnicas de Análisis de Suelos; Pico Sacro Editorial: Santiago de Compostela, Spain, 1976. [Google Scholar]
- USDA (United States Department of Agriculture). Soil Survey Manual. Agriculture Handbook 18; USDA: Washington, DC, USA, 1951. [Google Scholar]
- Leirós, M.C.; Trasar-Cepeda, C.; Seoane, S.; Gil-Sotres, F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 1999, 31, 327–335. [Google Scholar] [CrossRef]
- Ucha, C.; Reyes, O.; Trasar-Cepeda, C.; Salgado, J.; Parajó, J.J. Ecotoxicological evaluation of ethylammonium nitrate and aluminium salt mixture. Chem. Proc. 2021, 3, 85. [Google Scholar]
- Sixto, T.; Ucha, C.; Trasar-Cepeda, C.; Reyes, O.; Salgado, J. Effects of three ionic liquids on microbial activity of an organic soil. Microcalorimetric study. Proceedings 2018, 9, 8. [Google Scholar]
- Sixto, T. Impacto Sobre a Actividade Encimática do solo do Líquido Iónico Nitrato de Etilamonio e a súa Mestura coa sal de Aluminio, Ambos con Posibles usos Electroquímicos. Master’s Thesis, Universidad de Santiago de Compostela, Santiago, Spain, 2021; 68p. [Google Scholar]
- Gil-Sotres, F.; Zech, W.; Alt, H.G. Characterization of phosphorus fractions in surface horizons of soils from Galicia (NW Spain) bv 31P NMR spectroscopv. Soil Biol. Biochem. 1990, 22, 75–79. [Google Scholar] [CrossRef]
Name | Abbreviation [CAS Number] | Structure | Mw (g mol−1) | Density (g mL−1) | Purity (%) (Brand) |
---|---|---|---|---|---|
Ethylamonium nitrate | EAN [22113-86-6] | 108.097 | 1.261 | >97.00 (Iolitec) | |
Aluminium nitrate | Al(NO3)3 [7784-27-2] | 375.13 | - | >98% (Scharlau) |
Soil | pH KCl | pH H2O | %Ct | %Nt | C/N | pF 2.5 | %Silt | %Sand | Texture |
---|---|---|---|---|---|---|---|---|---|
Negreira | 3.28 ± 0.01 | 4.17 ± 0.07 | 12.13 ± 0.06 | 0.65 ± 0.02 | 19 | 85.0% | 16 | 71 | S/L * |
A Pedra (EAN) # | 3.68 ± 0.02 | 4.61 ± 0.01 | 2.04 ± 0.21 | 0.17 ± 0.01 | 12 | 34.3% | 23 | 66 | S/L * |
A Pedra (EAN-Al) # | 3.67 ± 0.02 | 4.68 ± 0.06 | 2.17 ± 0.05 | 0.21 ± 0.02 | 10 | 34.3% | 23 | 66 | S/L * |
A Pedra (Al) # | 3.50 ± 0.00 | 4.59 ± 0.01 | 2.88 ± 0.02 | 0.22 ± 0.00 | 13 | 34.3% | 23 | 66 | S/L * |
Dose | Carbon (g C kg−1 d.s.) | Nitrogen (g N kg−1 d.s.) | ||||
---|---|---|---|---|---|---|
g kg−1 | EAN | EAN-Al | Al(NO3)3 | EAN | EAN-Al | Al(NO3)3 |
1.75 | 0.39 | 0.27 | 0 | 0.45 | 0.34 | 0.20 |
17.47 | 3.88 | 2.72 | 0 | 4.53 | 3.43 | 1.96 |
43.68 | 9.70 | 6.80 | 0 | 11.32 | 8.56 | 4.89 |
69.90 | 15.52 | 10.88 | 0 | 18.11 | 13.70 | 7.83 |
104.84 | 23.28 | 16.32 | 0 | 27.17 | 20.55 | 11.74 |
122.32 | 27.16 | 19.04 | 0 | 31.70 | 23.98 | 13.70 |
Dose | C/N Ratio A Pedra Soil | C/N Ratio Negreira Soil | ||||
---|---|---|---|---|---|---|
g kg−1 | EAN | EAN-Al | Al(NO3)3 | EAN | EAN-Al | Al(NO3)3 |
0.0 | 12 | 10 | 10 | 19 | 19 | 19 |
1.75 | 9 | 9 | 9 | 17 | 18 | 18 |
17.47 | 4 | 4 | 5 | 11 | 13 | 14 |
43.68 | 2 | 3 | 3 | 7 | 8 | 11 |
69.90 | 2 | 2 | 2 | 6 | 7 | 8 |
104.84 | 2 | 2 | 2 | 4 | 5 | 7 |
122.32 | 1 | 2 | 1 | 4 | 5 | 6 |
Dose | CO2-C Emitted (A Pedra Soil) | CO2-C Emitted (Negreira Soil) | ||||
---|---|---|---|---|---|---|
g kg−1 | EAN | EAN-Al | Al(NO3)3 | EAN | EAN-Al | Al(NO3)3 |
0.0 | 337 ± 134 | 343 ± 43 | 493 ± 14 | 1790 ± 155 | 1346 ± 57 | 602 ± 18 |
1.75 | 433 ± 17 | 429 ± 45 | 390 ± 12 | 1856 ± 0 | 1271 ± 58 | 542 ± 10 |
17.47 | 2024 ± 77 | 1402 ± 92 | 519 ± 11 | 2663 ± 119 | 2082 ± 139 | 689 ± 17 |
43.68 | 5183 ± 149 | 2734 ± 277 | 489 ± 25 | 5886 ± 318 | 4021 ± 139 | 708 ± 16 |
69.90 | 11,191 ± 166 | 375 ± 33 | 473 ± 25 | 9096 ± 164 | 8509 ± 139 * | 654 ± 15 |
104.84 | 7030 ± 147 | 216 ± 35 | 424 ± 27 | 16,884 ± 866 * | 11,424 ± 550 * | 637 ± 21 |
122.32 | 273 ± 70 | 186 ± 38 | 490 ± 20 | 21,874 ± 688 * | 1326 ± 737 * | 595 ± 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sixto, T.; Priano, M.E.; Parajó, J.J.; Trasar-Cepeda, C. Is the Impact of Ethylammonium Nitrate on Soil Basal Respiration Modified by Addition of Aluminium Salt to Improve the Performance in Electrochemical Applications? Chem. Proc. 2022, 8, 98. https://doi.org/10.3390/ecsoc-25-11789
Sixto T, Priano ME, Parajó JJ, Trasar-Cepeda C. Is the Impact of Ethylammonium Nitrate on Soil Basal Respiration Modified by Addition of Aluminium Salt to Improve the Performance in Electrochemical Applications? Chemistry Proceedings. 2022; 8(1):98. https://doi.org/10.3390/ecsoc-25-11789
Chicago/Turabian StyleSixto, Teresa, María Eugenia Priano, Juan J. Parajó, and Carmen Trasar-Cepeda. 2022. "Is the Impact of Ethylammonium Nitrate on Soil Basal Respiration Modified by Addition of Aluminium Salt to Improve the Performance in Electrochemical Applications?" Chemistry Proceedings 8, no. 1: 98. https://doi.org/10.3390/ecsoc-25-11789
APA StyleSixto, T., Priano, M. E., Parajó, J. J., & Trasar-Cepeda, C. (2022). Is the Impact of Ethylammonium Nitrate on Soil Basal Respiration Modified by Addition of Aluminium Salt to Improve the Performance in Electrochemical Applications? Chemistry Proceedings, 8(1), 98. https://doi.org/10.3390/ecsoc-25-11789