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Abstract: From the band calculation, the copper d-orbital band formed slightly above the valence
band maximum would function as an acceptor level promoting the generation of carriers. In addition,
the excitation processes from the p-orbital of iodine and the d-orbital of copper to the s-orbital of
sodium could suppress carrier recombination. Total energy calculations showed that, the stability
of the crystal structure decreases with the addition of copper and sodium, but increases with the
addition of ethylammonium. Therefore, it is expected that the combination of these compounds
can compensate for the disadvantage of unstable crystal structure. The calculated results could be
obtained by optimizing the composition of the perovskite and the annealing conditions.

Keywords: copper; sodium; ethylammonium; first-principles calculations; perovskite; solar cell

1. Introduction

There have been many investigations to improve the conversion efficiency and durabil-
ity of devices by adding compounds to the perovskite precursor solution, and these are still
being actively researched. In this study, copper (Cu), sodium (Na) and ethylammonium
(EA) were focused on. Cu compounds are mainly used as hole transport materials, such
as copper thiocyanate (CuSCN) and copper oxide (CuO or Cu2O), which are expected
to be stable inorganic hole transport materials that can replace organic hole transport
materials [1–5]. Many studies have been reported on the addition of alkali metals to per-
ovskite precursor solutions [6–11], but relatively few studies have been reported on the
addition of copper [12–15]. A previous study reported that the addition of CuBr2 and NaCl
to perovskite precursor solutions improved the conversion efficiency and durability of
the devices [16,17]. In that study, it was reported that the lattice distortion of perovskite
crystals was reduced by the addition of a small quantity of Cu, and the lattice defects
were suppressed by the transfer of Na to the lattice defect sites after the desorption of
methylammonium (MA), which led to the enhanced conversion efficiency and durability
of the devices.

In addition to the experimental investigation of the addition effect, the analysis using
first-principles calculations has been actively studied. CH3NH3PbI3 is known as the most
general perovskite used as a photoelectric conversion material. First-principles calculations
using a structural model in which organic cations, metal cations, and halogen anions
are substituted by other molecules or atoms can be used to estimate the stability of the
crystal structure. In a previous study reported in 2019, first-principles calculations showed
that substituting EA for MA enhanced the stability of the crystal structure [18]. The
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calculated energy gap values were agreed well with the experimental values, and the
correspondence between the calculated and experimental results indicates that the addition
effect can be estimated by first-principles calculations. There have been other attempts to
improve the properties of devices by substituting MA with larger organic cations [19–24].
Furthermore, numerous studies on the effects of halogen additions have been conducted,
both computationally and experimentally [25–29]. The selectivity of the halogen is very
important because the energy gap and the crystallinity of the perovskite film changes
for halogen.

The purpose of this study is to investigate the addition effects of Cu, Na and EA using
experimental characterization and first-principles calculations. Co-addition of Cu and Na
enhanced the JSC, VOC, and FF, resulting in higher conversion efficiency. This result is
attributed to the enhancement of carrier generation by Cu addition and the suppression of
carrier loss by Na addition. The properties are expected to be further improved by using
other organic cations or alkali metals, or by optimizing the experimental conditions.

2. Experimental Procedures and Calculation

Detailed fabrication processes were described in the previous works [30–33]. F-doped
tin oxide (FTO) substrates were cleaned in an ultrasonic bath with acetone and methanol
and dried under nitrogen gas. The 0.15 M TiO2 precursor solution was spin-coated on the
FTO substrate at 3000 rpm for 30 s, and the coated substrate was then annealed at 125 ◦C for
5 min. The 0.30 M TiO2 precursor solution was spin-coated on the TiO2 layer at 3000 rpm
for 30 s, and the resulting substrate was annealed at 125 ◦C for 5 min. The process to form
the 0.30 M precursor layer was performed twice. Then, the FTO substrate was sintered
at 550 ◦C for 30 min to form a compact TiO2 layer. To form the mesoporous TiO2 layer,
a TiO2 paste was prepared from the TiO2 powder with poly(ethylene glycol)in ultrapure
water. The solution was mixed with acetylacetone and Triton X-10 for 30 min. Then, the
TiO2 paste was spin-coated on the compact TiO2 layer at 5000 rpm for 30 s. The resulting
cell was annealed at 550 ◦C for 30 min to form the mesoporous TiO2 layer.

To prepare the perovskite compounds, mixed solutions of CH3NH3I (2.4 M, Showa Chem-
ical, Tokyo, Japan) and PbCl2 (0.8 M, Sigma-Aldrich, Tokyo, Japan) in N,N-dimethylformamide
(DMF, Sigma-Aldrich, 0.5 mL) were prepared for the standard cell. Pb or MA in the per-
ovskite structure was expected to be substituted by Cu, Na or EA, respectively. These
perovskite solutions were then introduced into the TiO2 mesopores by spin-coating at
2000 rpm for 60 s, which is followed by annealing in air. During the spin-coating, a hot
air-blowing method was applied. Temperatures of the cells during the air-blowing were set
at 90 ◦C. A polysilane solution was prepared by mixing chlorobenzene (Fujifilm Wako Pure
Chemical Corporation, Osaka, Japan, 0.5 mL) with decaphenylcyclopentasilane (DPPS,
Osaka Gas Chemicals, Osaka, Japan, OGSOL SI-30-10, 10 mg). During the last 15 s of
the third spin-coating of the perovskite precursor solutions, the DPPS solution was also
spin-coated on the perovskite layer [34–37]. The annealing temperature was gradually
increased from 90 ◦C until the entire film turned black [38].

A solution of spiro-OMeTAD in chlorobenzene was mixed with a solution of lithium
bis(tri-fluoromethylsulfonyl)imide in acetonitrile and tris(2-(1H-pyrazol-1-yl)-4-tert-butyl
pyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] in acetonitrile (0.5 mL) for 24 h.
The former solution with 4-tertbutylpyridine was mixed with the Li-TFSI solution and
FK209 solution (0.004 mL) for 30 min at 70 ◦C. Then, the spiro-OMeTAD solution was
spin-coated on the perovskite layer at 4000 rpm for 30 s. All procedures were performed in
ambient air. Finally, gold (Au) electrodes were evaporated as top electrodes using a metal
mask for the patterning.

First principle calculations of all structures were performed within the generalized gra-
dient approximation in the form of the Perdew-Burke-Ernzerhof exchange-correlation
functional using Quantum Espresso. The cut-off energy of the planar wavefunction
was set to 80 eV for the structural optimization and to 25 eV for the other calculations.
4 × 4 × 4 k-point mesh was used for calculations of all structures.
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3. Results and Discussion

The band structure, partial density of states and parameters were obtained by first-
principles calculations. The total substitution structure model used in the calculations is
shown in Figure 1. The energy gap increases when iodine is substituted with bromine or
chlorine compared to MAPbI3, which is the most general perovskite used as a photoelectric
conversion material. In general, an increase in the energy gap may lead to an increase in the
open-circuit voltage, therefore, the use of bromide or chloride as an additive may improve
the open-circuit voltage.
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Figure 1. Structure models of (a) MAPbI3, (b) MAPbBr3.

The total energy per cell of the structural model is obtained by first-principles calcula-
tions, and a smaller value means that the crystal structure is more stable. Since the total
energy decreases by substituting iodine with bromine or chlorine, the crystal structure is
expected to be stabilized. The result that the addition of EA improves the stability of the
crystal structure is in good agreement with previous studies.

Calculations for the partial substitutional structure model were also performed [39–44].
The partial substitution structure model used in the calculations is shown in Figure 2.
Compared to the total substitutional structure model, the partial substitutional structure
model contains more atoms, and thus requires a longer time for calculation. In contrast
to MA0.875EA0.125PbI3, the addition of copper resulted in the formation of a shallow band
of Cu d-orbitals slightly above the band of iodine p-orbitals, decreasing the energy gap
and the mobility of holes. Furthermore, comparing MA0.875EA0.125Pb0.875Cu0.125I3 and
MA0.750EA0.125Na0.125Pb0.875Cu0.125I3, by substituting Na for a part of MA, a band of Na s
orbitals is formed slightly above the conduction band minimum, which results in a slight
increase in electron mobility. The energy gap is increased by substituting some of the iodine
with bromine, and this result is in good agreement with the calculated results of the total
substitution structure model.
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In the calculated results of the partial substitution structure model, it is indicated that
the addition of Cu forms a shallow band of Cu d-orbitals slightly above the band of iodine
p-orbitals, which reduces the energy gap and decreases the hole mobility. However, if we
consider the Cu d-orbital band as an acceptor level, it may have a positive effect on the
performance of the device.

The current-voltage (J-V) curve and the external quantum efficiency (EQE) obtained
from the present perovskite photovoltaic devices. From the calculated results of the partial
substitution structure model, it was expected that the addition of Cu would decrease
the energy gap and reduce the hole mobility. However, from the measured results, the
co-adding of Cu and Na slightly increased the energy gap and further enhanced the short-
circuit current density, open-circuit voltage, and fill factor, resulting in higher conversion
efficiency. Therefore, the Cu d-orbitals are considered to function as acceptor levels.

4. Conclusions

In this study, the effects of co-addition of Cu, Na and EA into the perovskite precursor
solution were investigated using the first-principles calculations. The addition of these
additives to the perovskite precursor solution increased the energy gap and improved
the open circuit voltage in all devices compared to the standard system. According to
first-principles calculations, replacing all of the iodine with bromine or chlorine increased
the energy gap, indicating that the improvement in VOC was due to the effect of halogen.
When some of the lead was substituted with Cu, a shallow band of Cu d-orbitals was
formed slightly above the valence band maximum, suggesting that the addition of Cu
decreases the energy gap and reduces the hole mobility. When a small amount of Cu was
added in the experiment, the conversion efficiency decreased slightly, but the energy gap
increased slightly. This suggests that the Cu energy levels of formed in the forbidden band
may function as acceptor levels. The excitation of electrons from the p-orbital of iodine to
the d-orbital of Cu is thought to have promoted the generation of carriers, leading to the
improvement of JSC.
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