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Abstract: The Digital Elevation Model (DEM) is mostly used to extract the terrain parameters for
surface and elevation analysis to represent the topography of the earth’s surface in the best possible
way. Nowadays, smart devices such as smartphones and tablets employed with GPS chipsets are
easily available in the market. These smart devices can measure elevation data and are cost effective.
The relatively plain areas of Ratlam City (Madhya Pradesh) were the study area. A Vivo 1606
smartphone incorporated with Assisted-GPS (A-GPS) was used with a GPS utility App called Mobile
Topographer to collect the ground coordinates and elevation data. The ground control points (GCPs)
were collected in parts of urban areas, such as open grounds, streets, parks, and other uniformly
distributed GCP locations with few GCPs in outer regions of the city. Using smartphone-derived
GCPs as a reference, the two openly accessible DEMs—namely CartoDEM V3 R1 and TanDEM-
X—were evaluated statistically. Statistical parameters such as Mean Error (ME), Mean Absolute
Error (MAE), and Root Mean Square Error (RMSE) were computed for comparative quality analysis
between CartoDEM V3 R1 and TanDEM-X 90, using the observed GPS elevation data. The ME
(4.60 m), MAE (6.12 m), and RMSE (7.15 m) for TanDEM-X 90 were higher than that of CartoDEM
V3 R1, ME (3.09 m), MAE (5.05 m), and RMSE (6.17 m), respectively. The results from the A-GPS
Smartphone revealed that the accuracy of CartoDEM V3 R1 is higher and it statistically performs
better than TanDEM-X in plain areas of Ratlam using the Smartphone A-GPS.

Keywords: smartphone; A-GPS; CartoDEM V3 R1; TanDEM-X 90

1. Introduction

The digital elevation model (DEM) represents the earth’s topographic surface digitally,
either as a raster or vector representation incorporating the elevation data. A set of quality
ground control points (GCPs) are required to create DEM, in the form of a two-dimensional
array with elevation at every latitude, and longitude location [1,2]. Openly accessible DEMs
are available on various web portals such as BHUVAN for CartoDEM V3 R1 data with
1 arc, 30 m resolution, and GeoServices DLR for TanDEM-X 90 with 90m resolution. The
TanDEM-X had challenges in vertical accuracy due to different imaging configurations
as well as data processing methods, and contained various errors. CartoDEM products
are used to establish the accurate geographic location of features and make measurements
with its improved version three, release one; i.e., CartoDEM V3 R1 [2–5]. CartoDEM
V3 R1 works best with the plain regions when evaluated with the GCPs collected using
the differential Global Positioning System (D-GPS) method, which is relatively expensive
and provides inputs for erosion mapping, and terrain modeling [4,6]. Different DEM
generation techniques present different accuracies for different applications, making the
need for evaluation of DEM accuracy compulsory [7–10]. Ionospheric delay is the most
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potential and unpredictable positioning error. It is frequency dependent and is directly
proportional to the total electron content (TEC) [11,12]. A high-accuracy geodetic GPS
receiver gives submeters- to centimeters-level accuracy, depending on its ability to track,
identify, and minimize the error in satellite signals during processing. The positioning
systems of smartphone-based A-GPS receivers or as Location-Based Services (LBS) are
not as accurate as of the geodetic DGPS instruments, but the data accuracy is enough
for many regional- to local-level applications for the management of various services
in cities, including civil works for water and sewerage pipelines. Qualcomm’s gpsOne
technology-based smartphone supporting multiple modes of A-GPS was used as a GPS
receiver for highly reliable positioning capabilities in areas where cellular networks are
not accessible [13]. Vivo 1606 is capable of tracking single frequency multi-constellation
measurements using GPS (L5), GLONASS (L1), and Beidou (B1) frequencies. Smartphones
manufactured before 2017 were mostly single-frequency receivers [14]. As Smartphone
technology has become the predominant tool, millions of people are now using small
GPS-capable smartphones not only for navigation but also for many applications such as
reality-based gaming apps, bicycle rentals, and so on [13,15]. Mobile Topographer is one of
the android apps available on the Google play store, which also has paid as well as free
services ideal for surveyors and other users for navigation or collecting the GCPs with
preferable DOP (<1.3) values. Its updated features include an increase in GPS accuracy, and
the ability to display and coordinate conversion [16]. New LBS have emerged that require
more accurate positioning results, such as in A smartphone-based photogrammetric aerial
vehicle system [17]. This study quantitatively examines the openly accessible DEMs using
GCPs from a smartphone with A-GPS.

2. Material and Method
2.1. Study Area

The Ratlam District has an area of about 4861 km2, primarily characterized as relatively
plain terrain. It is located around 23◦20′3.0084′′ N and 75◦2′15.4896′′ E and is a major part
of the Malwa Plateau. Ratlam city is well known for gold jewelry. The study was performed
in Ratlam city and its surroundings (Figure 1).
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2.2. Ground Control Point (GCP) Collection

The study area was surveyed using a Vivo 1606 phone with the Mobile Topographer
app, for the evaluation of DEMs. A survey was carried out for collecting GCPs at appro-
priate locations such as parks, streets, urban areas, open grounds, and rural outer areas
of Ratlam city for utilization as the checkpoints for the DEMs. The points were collected
in the World Geodetic System (WGS-84) datum. The flowchart in Figure 2 describes the
methodology.
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Figure 2. Flow chart of the methodology for DEM evaluation using GCPs collected from A-GPS
enabled Smartphone.

According to the researchers, coordinate accuracy can be achieved in the order of 1 m
or better after 30 min of data collection using smartphone GPS [18]. In this study, the A-GPS
smartphone data were collected as reference data for statistical analysis of DEMs and a
minimum PDOP value of about 0.2 was attained in approximately 35 min of operations
at desired GCP locations. Elevation data of TanDEM-X 90 and CartoDEM V3 R1 were
extracted after superimposing the GCPs (Checkpoints) using ArcGIS as a standard method
used in various studies for evaluation of DEMs [19,20]. Figure 3 displays a set of 30 GCPs
obtained from a smartphone superimposed on DEMs.
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2.3. Statistical Analysis

The elevation or height values extracted from both the DEMs were used to calculate
the differences with DEMs. The accuracy estimation with smartphone A-GPS observation
datasets is performed by calculating ME (Equation (1)), MAE (Equation (2)), and RMSE
(Equation (3)) [21,22]. Hi(DEM) (=Hi(CartoDEM) or Hi(TanDEM-X)) is the extracted elevation
from the DEMs dataset and Hi(A-GPS) is the A-GPS observed reference datasets at different
GCP locations (i = 1 to n).

ME =
∑n

i=0 Hi(DEM) −Hi(A−GPS)

n
(1)

MAE =
∑n

i=0 | Hi(DEM) −Hi(A−GPS) |
n

× 100 (2)

RMSE =

√√√√∑n
i=1

(
Hi(DEM) −Hi(A−GPS)

)2

n
(3)

3. Results and Discussion

The difference between A-GPS reference elevation values and the openly accessible
DEMs (TanDEM-X 90, and CartoDEM V3 R1) were evaluated as shown in Table 1 for
analysis. The range of minimum and maximum values of TanDEM-X 90 using 30 GCPs
in the study area is 11.09 and 17.83 m. Similarly, the values for CartoDEM V3R1 are 10.71
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and 14.20 m, respectively. Table 2 indicates the results of statistical analysis between the
two DEMs in the form of ME, MAE, and RMSE.

Table 1. Statistical analysis of TanDEM 90 and CartoDEMV3R1 using Smartphone A-GPS (Sam-
ple set).

S No. H(TanDEM-X) − H(A-GPS) (H(TanDEM-X) − H(A-GPS))2 H(CartoDEM) − H(A-GPS) (H(CartoDEM) − H(A-GPS))2

1 4.32 18.69 3.08 9.47
2 6.28 39.45 5.33 28.37

. . . . . . . . . . . . . . .
30 3.38 11.44 −0.30 0.09

Table 2. Statistical results of TanDEM-X 90m and CartoDEM V3R1.

DEM ME (m) MAE (m) RMSE (m)

TanDEM-X 90 m 4.60 6.12 7.15
CartoDEMV3R1 3.09 5.05 6.17

The results revealed that the accuracy of CartoDEM V3 R1 is higher compared with
TanDEM-X 90 in plain terrain regions of Ratlam city and surroundings. The elevation
accuracy of DEM depends on the slope and land cover of the terrain, which allows the
user to predict the DEM quality according to the terrain regions utilized as per the user’s
requirements [8,23]. The difference between TanDEM-X 90, and CartoDEM V3 R1 elevation
values is reasonable based on their methods of generation and thus may require more
accurate methods for reference data generation such as DGPS or LiDAR datasets.

4. Conclusions

The GCPs were obtained with Vivo 1606 Smartphone A-GPS using Mobile Topogra-
pher app for successful experimentation, with an assessment of openly accessible DEMs.
The DEM accuracy of the openly accessible DEMs using low-cost smartphones incorporated
with A-GPS was computed reasonably, which serves applications meeting the accuracy
requirement criterion. The methodology developed for the assessment of individual ac-
curacies (35 min observation, PDOP~0.2) was well within the margins of the accuracy of
an A-GPS Smartphone reference GCPs. The statistical result revealed that the accuracy of
CartoDEM V3 R1 was higher compared to TanDEM-X 90, as found in similar studies [23].
However, the uncertainty in the analysis was governed by the accuracy of A-GPS and local
site characteristics.
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