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Abstract: Global modernization efforts focus on increasing aviation system capacity and efficiency,
while maintaining high levels of safety. To accomplish these objectives, new analysis methods are
required that consider Air Traffic Management (ATM) system operations at both the flight level and
the airspace level. With the expansion of ADS-B technology, open-source flight tracking data has
become more readily available to enable larger-scale analyses of aircraft operations. Specifically,
anomaly detection has been identified as being paramount. However, previous analyses of airspace-
level operational states have not considered the observation of transitional (transitioning between
two distinct airspace-level operational patterns) or anomalous operational states. Therefore, a
method is proposed in which the time-series trajectory data of all aircraft operating within a terminal
airspace during a specified time period is aggregated to generate a representation of the airspace-
level operational states such that a recursive DBSCAN procedure to characterize airspace-level
operational states as either nominal, transitional, or anomalous as well as to identify the distinct
nominal operational patterns. This method is demonstrated on one year of ADS-B trajectory data for
aircraft arriving at San Francisco International Airport (KSFO). Overall, visual inspection of results
indicate the method’s promise in assisting ATM system operators, decision-makers, and planners in
designing the implementation of new operational concepts.

Keywords: air traffic management; ADS-B; machine learning; clustering

1. Introduction and Background

Air Traffic Management (ATM) systems are tasked with managing the operations
of some of the world’s most complex system-of-systems as they are responsible for the
operations of all aircraft. The ATM services operate interdependently to ensure the safe
and efficient operation of all aircraft within an airspace. For instance, Air Traffic Flow
Management (ATFM) focuses more on the broader systems (airspace-level) approach
to managing air traffic and supports Air Traffic Control (ATC), an Air Traffic Service
(ATS) that provides flight-level instructions, in achieving the most efficient utilization of
airspace/airport capacity, considering imposed safety constraints. Hence, ATM systems
undoubtedly impact operations at both the flight level and the airspace level. In this
context, the flight level refers to the operations of a single flight within an airspace, whereas
the airspace level refers to the operations of multiple flights within an airspace.

The vast complexity of ATM systems and flight- and airspace-level interactions will
continue to increase as air traffic volume increases and Advanced Air Mobility (AAM)
concepts are introduced in the airspace. Though, existing ATM systems continue to be
limited by outdated technologies and operational procedures [1]. Hence, global ATM
system modernization efforts, such as the Federal Aviation Administration’s (FAA’s) Next
Generation Air Transportation System (NextGen) [2] portfolio in the U.S. and the Single
European Sky ATM Research (SESAR) [3] program in Europe, are underway with the
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primary objectives of increasing system capacity and efficiency, while maintaining high
levels of safety through introduction of new technologies and implementation of new
operational concepts. A principal objective of the modernization efforts is the implementa-
tion of Trajectory Based Operations (TBO), which is intended to enable strategic planning,
management, and optimization of trajectories operating within and across various airspace
by leveraging time-based management, information exchange between air and ground
systems, and an aircraft’s ability to fly precise paths in time and space [4]. TBO is expected
to enable collaborative decisions that consider the entire airspace system, providing routes
optimized at both the flight level and the airspace level. To provide the basis for successful
introduction of the TBO concept, it is of paramount importance to develop methods to as-
sess a flight’s trajectory in the context of the other flights’ trajectories (flight-level analysis).
Further, the envisioned TBO is anticipated to result in a less structured airspace due to
more flexible trajectory planning, which further underscores the importance of analysis of
airspace-level operations.

With the expansion of ADS-B technology, open-source flight tracking data has become
more readily available to enable larger-scale analyses of ATM system operations [1]. The
trajectory information available in ADS-B messages is the core information that is used by
ATM systems as a basis for activities such as distributing flight information to relevant air-
lines and ATC units, facilitating timely coordination between sectors and units, correlating
flight data with tracks, monitoring the adherence of an aircraft to its assigned route, and
detecting and resolving conflicts. Considering the advances in modern machine learning
techniques, the use of various data-driven methods to gain insights from ADS-B trajectory
has been an active area of research. Specifically, anomaly detection has been identified
as an important task in improving the capacity, efficiency, and safety of ATM systems, as
evidenced by the recent literature on this topic [5]. The existing anomaly detection methods
presented in the aviation literature detect flight-level anomalies in either the spatial or
energy dimension of aircraft trajectories. Motivated by the limited number of approaches
that simultaneously consider both spatial and energy metrics, Corrado et al. [6] introduce
the concepts of spatial anomalies and energy anomalies detected at the flight level in ADS-B
trajectory data. While detecting anomalies at the flight level provides crucial knowledge
to ATM system operators and decision-makers as well as flight crews, it is important to
put into context that each individual flight operation is a product of the operations of the
larger airspace system, i.e., the individual flight trajectories are not independent. It is not
feasible to improve the capacity, efficiency, and safety of ATM systems without analyzing
operations, such as performing anomaly detection, at the airspace level.

Unlike an analysis at the flight level, where there exists time-series trajectory data
associated with each flight that may be directly analyzed, an analysis of airspace-level
operations requires that some time interval be specified over which to aggregate the flight-
level operational data, or time-series trajectory data, of all flights operating within the
airspace. The aggregation of the time-series trajectory data of all flights operating within
an airspace during a specified time interval comprises what may be referred to as an
airspace-level operational state, or, simply, operational state. However, the aviation literature
related to the airspace-level analysis of operational states is limited.

Mangortey et al. [7] present a method to cluster daily operations at an airport, where
metrics such as the number of diversions, Ground Stops, departure delays, etc., are lever-
aged, to characterize terminal airspace “operational states” as belonging to a specific
category on a daily basis. However, the metrics used are not an aggregation of all flights’
trajectories’ time-series metrics. Rather, these metrics are more-so an aggregation of flight
metadata, hence, the placement of “operational states” in quotations. Enriquez [8] presents
a method to identify temporally persistent flows in the terminal airspace using spectral
clustering methods. For each time period in a set of time intervals, a spectral clustering
procedure is leveraged to cluster trajectories and identify air traffic flows, where a “nomi-
nal line” is computed for each air traffic flow as the point-wise median of all trajectories
assigned to the air traffic flow [8]. Air traffic flows that are persistent in time are able
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to be identified via a clustering of the nominal lines [8]. However, the nominal lines do
not represent an aggregation of the operations of all flights operating within an airspace
during a specified time interval. Rather, nominal lines represent a flow-level aggregation of
multiple flights’ operations. Murça [1] applies a hierarchical clustering algorithm to a set
of “flow vectors”, which are the columns of a “flow matrix”, where the columns of the flow
matrix indicate which air traffic flows are active during specified time intervals, where the
specified time intervals are the rows of the flow matrix. A hierarchical clustering algorithm
is applied to reveal primary operational patterns in metroplex terminal airspace systems [1].
An operational pattern may be considered as a set of operational states that conform to
a combination of air traffic flows, or an airspace configuration, that is observed regularly.
However, Murça [1] does not consider time intervals in which an operational state, or flow
vector, does not align with an operational pattern. Further, unique to the specification of a
time interval for analysis is that within that time interval there may have occurred a transi-
tion between two distinct operational patterns. Therefore, to perform analysis, specifically
anomaly detection, at the airspace level, requires the characterization of operational states
as either: nominal (conforming to a distinct operational pattern), transitional, or anomalous.
Additionally, it is valuable to not only characterize an operational state as nominal, but also
identify the operational pattern to which it belongs. For instance, identification of distinct
operational patterns may enable aggregate noise analysis at airports [9]. Thus, considering
the previous observations, the following research objective is proposed for this work:

Research Objective: Demonstrate the characterization of terminal airspace operational states as either
nominal, transitional, or anomalous and identify distinct operational patterns.

Due to the terminal airspace operations’ significance in overall ATM system perfor-
mance as well as their focus in the aviation literature, this work similarly focuses on the
terminal airspace operations. Specifically, arriving aircraft within the terminal airspace
experience the highest incident rate; thus, the arriving aircraft trajectories during specified
time intervals are considered. Specifically, disturbances in spatial operations of aircraft at the
airspace level, or lack of conformance to nominal operations, within the terminal airspace
may be realized as delays (efficiency losses) or potential reduction in safety margins.

2. Method

To perform the characterization of operational states, including the identification of
operational patterns, requires an adequate representation of operational states. Moreover,
a procedure by which to characterize the operational states as either nominal, transitional,
or anomalous and identify the operational patterns is required. Therefore, the proposed
representation of operational states is discussed as well as the proposed procedure to
characterize the operational states and identify the operational patterns.

2.1. Operational State Representation

Previous airspace-level analysis efforts tend to rely on the air traffic flow identification
task to generate a representation of air traffic flows. For instance, Murça [1] represents the
operational states as the flow vectors in the flow matrix, which requires prior air traffic
flow identification to have been performed across all trajectories in all time intervals. Then,
an air traffic flow is considered to be “active” within a specified time interval if at least one
trajectory is associated with that flow. Thus, there is a loss of information related to the
distribution of trajectories within the airspace as the trajectories that compose the air traffic
flow may be very “tight” or “spread out”. Moreover, information related to the distribution
of trajectories across air traffic flows is lost. Further, spatial anomalies are neglected in
this case as well as go-arounds, which are an important aviation event [10]. Therefore, a
representation of the operational states that does not rely on identification of air traffic
flows is advantageous.

It is noted that the coordinate pairs representing the spatial metrics of each trajectories
are two-dimensional (2D), whether they are represented as longitude/latitude coordinates
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or Cartesian (x, y) coordinates resulting from a projection of the longitude/latitude coor-
dinates. Thus, it is possible to consider the trajectory’s spatial metrics coordinate pairs
as points on a 2D grid. For each trajectory, it is possible to “fill” the spaces on the 2D
grid that the trajectory passes through. Expressed mathematically, the 2D grid may be
considered to be a 2D matrix of zeros, where the “filling” of a grid space, if a trajectory
passes through it, may be represented by inserting a 1 into the matrix entry corresponding
to the grid space. This matrix may be referred to as a trajectory matrix. Figure 1 displays
this concept for a simple 5 × 5 grid and sample trajectories (in the slightly darker gray,
with 1’s present and the red line pass through), entering the airspace and arriving at the
airport location, which is at the center of the matrix in this example. It is possible to create
trajectory matrices for each arriving aircraft trajectory within the terminal airspace. Further,
it is possible to then sum the trajectory matrices for all flights operating within a specified
time interval. This matrix may be referred to as the airspace matrix, displayed in Figure
1. The airspace matrix enables the information for all flights operating within an airspace
during a specified time interval to have some representation in the aggregation as well as
providing more of an indication of the distribution of trajectories within the airspace as
opposed to the basic air traffic flow representation of the aggregation of flights. However,
the number of flights arriving at an airport varies throughout the day. Therefore, some
time intervals would experience higher maximum values for airspace matrix entries. This
could result in the identification of operational patterns being skewed towards identifying
groupings of time intervals with a similar number of flights. Thus, a normalization step is
proposed in which the airspace matrix entries are divided by the total number of trajectory
matrices that are summed to generate the airspace matrix. This normalization effectively
provides a measure of the density of trajectories within an airspace during a specified time
interval. This normalized matrix may be referred to as an airspace density matrix, displayed
in Figure 1.

Figure 1. Computation of the airspace density matrix.

2.2. Operational State Characterization

Once the operational states have been represented by the airspace density matrices,
a procedure to perform the operational state characterization and operational pattern
identification is required. In previous work, what may broadly be considered to be opera-
tional states have been analyzed leveraging clustering algorithms. For instance, Mangortey
et al. [7] leverage and compare the performance of various clustering algorithms, including
k-Means. Enriquez [8] applies a spectral clustering method. Additionally, Murça [1] applies
a hierarchical clustering algorithm. Therefore, in the context of characterizing operational
states as either nominal, transitional, or anomalous, the implementation of a clustering
algorithm may similarly be appropriate. However, it is important to select a clustering algo-
rithm that provides the capability to detect outliers, such as the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [11] algorithm.

Therefore, it is proposed to leverage DBSCAN to characterize the operational states.
The clusters identified by DBSCAN may be considered to be the nominal operational states,
corresponding to operational patterns, such that application of DBSCAN simultaneously
identifies operational patterns. An assumption is made that a robust application of DB-
SCAN would identify the operational states of those time intervals that are experiencing
a transition from one operational pattern to another as being an outlier. Therefore, by
comparing the operational pattern (cluster) assigned to the operational states correspond-
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ing to time intervals directly before and after an operational state that has been detected
as being an outlier, it is possible to determine if the time interval has been detected as
being an outlier due to having an operational state that may be characterized as being
transitional. All other identified outliers may be characterized as anomalies. Though,
once these transitional operational states have been discovered, it is preferable to remove
them from consideration of being either nominal or outlying such that characterization
and identification results are not skewed. Thus, it is proposed that a recursive DBSCAN
approach be taken to characterize operational states and identify operational patterns in
which the recursion stops when no more transitional operational states are characterized.

However, it is noted that the airspace density matrices are 2D (the set of airspace
density matrices is 3D), whereas DBSCAN requires a 2D feature vector matrix as an input.
Thus, the airspace density matrices should be flattened, i.e., stack the rows and/or columns
of the matrix into a one-dimensional (1D) vector. This results in a vector of length N × N,
where each element in the vector may be considered to be a feature to be considered in
the DBSCAN clustering. Therefore, depending on the size of N, there may be a very large
number of features to consider. There are a few potential issues that may arise with a large
number of features. For instance, there may be an issue with the increase in computation
time of the DBSCAN clustering algorithm itself. Therefore, it is advantageous to reduce the
dimensionality of the feature vectors. While there exist numerous dimensionality reduction
techniques, the Uniform Manifold Approximation and Projection (UMAP) [12] technique
is selected due to its ability to preserve some non-linear data relationships and its reduced
computation time compared to other non-linear dimensionality reduction techniques. The
overall methodology proposed in this work is described in Figure 2.

Figure 2. Methodology.

3. Implementation and Results

A review of the data leveraged and the generation of operational state representations
is presented. Subsequently, the implementation of the recursive DBSCAN operational state
characterization and operational pattern identification procedure is presented and results
are discussed.

3.1. Operational State Representation

ADS-B trajectory data is extracted from the OpenSky Network’s [13] historical database
for arriving aircraft at a specified airport. Data is extracted, cleaned, and processed using
the same procedure described in [6,14,15] for all aircraft arriving within the San Francisco
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International Airport (KSFO) terminal airspace in 2019. One hour was selected as length
of the time intervals to consider due to the tendency of some airspace-level metrics to
be computed on an hourly basis. For instance, the FAA’s ASPM database contains flight
metadata information, such as the number of scheduled arrivals, percentage of on-time
arrivals, average arrival delay time, etc., on an hourly basis. Therefore, the data set con-
taining all trajectories available was split into hourly data sets containing all trajectories
observed during the hour, resulting in 8760 time intervals to consider. However, most
airports do not operate 24 h per day. Hence, within the set of 8760 h, some hourly data
sets do not contain any trajectories. Approximately 5% of the hourly data sets contain no
trajectories. Therefore, these hourly data sets are discarded, leaving 8283 time intervals in
which the corresponding data set contains at least 1 trajectory. However, it is asserted that a
single trajectory record does not contain sufficient information to perform an airspace-level
assessment, as no aggregation of multiple flight-level operations occurs.

Further, it is important to consider the potential outcomes of generating an airspace
density matrix for an hour in which a relatively small number of aircraft arrive at an
airport. For instance, considering a relatively small number of arriving aircraft trajectories,
it is difficult to discern the distribution of the trajectories as the sample size is so small.
Further, the impact of spatially anomalous trajectories on the representation of the terminal
airspace operational states may be much more pronounced if only a few trajectories are
considered. Finally, in the context of ATM system modernization efforts to increase capacity,
the operational states of time intervals in which a larger number of aircraft arrive are more
relevant than those with fewer arrivals. Therefore, a threshold is set below which time
intervals are discarded if the hourly data set does not contain at least this many trajectories.
While this threshold may be variable depending upon the configuration of and operations
within a specific terminal airspace, for the KSFO terminal airspace this threshold is set at
15. After discarding all hourly data sets that did not contain at least 15 trajectories, 5861
data sets remained for analysis, and airspace density matrices with a grid size of 50 × 50
were generated.

3.2. Operational State Characterization

The UMAP dimensionality reduction technique was implemented leveraging the
umap [16] Python library such that two components were returned, i.e., the dimension of
the feature vectors was reduced from 2500 to 2. Subsequently, the UMAP components were
normalized leveraging the sklearn [17] Python library’s z-normalization capability. Then,
the recursive DBSCAN procedure was implemented leveraging the sklearn Python library’s
DBSCAN module. The DBSCAN minimum cluster size parameter was set at 2% of the total
number of time intervals. The value of 2% of the total number of time intervals was selected
considering that the official SFO west plan is said to be observed 98–95% of the time, which
would leave, potentially, 2% of the time that the official SFO south east plan may occur
(https://www.flysfo.com/community/noise/sfo-flight-patterns-and-operations, accessed
on 15 November 2021). Therefore, setting a value of the minimum cluster size parameter
greater than 2% of the total number of time intervals may result in operational states
corresponding to operational patterns associated with the official SFO south east plan
being identified as being outlying by the DBSCAN algorithm.

There exists a monotonic relationship between the fraction of outliers identified and
the DBSCAN ε radius parameter for a fixed value of minimum cluster size. Therefore,
the value of ε was varied until the fraction of outliers identified was between 0.01 (1%)
and 0.02 (2%) for each recursion in the procedure. The fraction of outliers identified was
specified as between 0.01 and 0.02 due to the property of the outlying operational states
being characterized as anomalous in the last recursion. Anomalies are, inherently, rare
events. Thus, it is desirable to detect only a small portion of a data set as anomalies,
especially when there is no ground truth or prior work related to airspace-level anomalous
operational states. A goal in detecting anomalous operational states is to narrow down the
set of time intervals that SMEs, operators, planners, and decision-makers should place the

https://www.flysfo.com/community/noise/sfo-flight-patterns-and-operations
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most emphasis on understanding due to their abnormal characteristics. Accordingly, it is
desirable to begin with a smaller set. Recall that the operational patterns are considered as
the groups of operational states assigned to clusters by DBSCAN.

Three clusters were identified by the recursive DBSCAN procedure, considered to be
the nominal operational patterns. Distribution of the operational states among the different
characterizations, where the nominal characterization is split into the three operational
patterns identified, is displayed in Table 1. Further, the air traffic flow centroids of the
trajectories associated with the three nominal operational patterns are displayed in Figure 3.

Table 1. Operational state characterization including specific operational pattern identified if the
operational state is nominal.

Operational State Assignment Number of Hours Percentage of Hours

Transitional Operational State 45 0.77%
Anomalous Operational State 76 1.30%

Operational Pattern 0 4086 69.72%
Operational Pattern 1 353 6.02%
Operational Pattern 2 1301 22.20%

Figure 3. Air traffic flow centroids of the trajectories associated with the three nominal opera-
tional patterns.

It is evident the identified clusters corresponding to the operational patterns presented
in Figure 3 are distinct. Additionally, these operational patterns align with those official
SFO operational plans, where operational pattern 0 and operational pattern 2 generally
align with the official SFO west plan, while operational pattern 1 generally aligns with
the official SFO south east plan. Further, Figure 4 displays the plot of the trajectories
associated with an operational state that has been characterized as transitional, as well as the
operational states directly before and after this transitional operational state. This transition
is from operational pattern 0 to operational pattern 1. It is evident the operational state
is characterized as being transitional due to the observation of trajectories that align with
air traffic flow centroids that are prominent in operational pattern 0 as well as operational
pattern 1. Through visual inspection, it appears the recursive DBSCAN procedure to
characterize operational states is successful in characterizing transitional operational states
as such. Finally, Figure 5 displays a plot of the trajectories associated with an operational
state characterized as being anomalous. It is evident the corresponding time interval
contains multiple trajectories that do not align with air traffic flows within the terminal
airspace and are potentially experiencing either a go-around or holding pattern. It is
noted that one trajectory alone experiencing a go-around or holding pattern should not
necessarily result in an operational state being characterized as anomalous. However, in
Figure 5 it appears there may have been more than one or two trajectories that experienced
go-around or holding patterns; thus, resulting in the operational state being detected as
anomalous. The recursive DBSCAN procedure to characterize operational states may be
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said to be successful in characterizing operational states as anomalous in the cases in which
multiple trajectory paths within the terminal airspace during the specified time interval
appear to be abnormal.

Figure 4. Transition between operational pattern 0 and operational pattern 1.

Figure 5. Example of anomalous operational state.

4. Conclusions

In the context of the implementation of new operational concepts as a result of the
global ATM system modernization efforts, airspace-level analysis is identified as being an
important step. Specifically, the characterization of terminal airspace operational states
was identified as being of paramount importance, including the identification of terminal
airspace operational patterns. Considering the sparsity of the existing aviation literature
related to airspace-level analysis, this work aimed to demonstrate a novel methodology to
characterize terminal airspace operational states as either nominal (belonging to an opera-
tional pattern), transitional, or anomalous and identify the distinct operational patterns.

The proposed method first generates a representation of the operational state of the ter-
minal airspace during a specified time interval considering the objective of aggregating the
time-series trajectory data for all aircraft operating within the terminal airspace during the
specified time interval. The proposed method involves a representation and characteriza-
tion step and was demonstrated on a full year of ADS-B trajectory data for aircraft arriving
at KSFO, where the full-year data set was split into hourly time interval data sets for which
to generate the airspace density matrix operational state representation for each. Then, a
recursive DBSCAN procedure is applied, in which operational states are characterized as
being either nominal (belonging to an operational pattern), transitional, or anomalous. If
an operational state is characterized as being transitional, it is removed from the data set,
where the recursion proceeds until no new transitional operational states are characterized.
Visual inspection of results indicate that the proposed method shows promise in character-
izing nominal, transitional, and anomalous operational states, as well as identifying distinct
operational patterns, which has the potential to assist ATM system operators, planners,
and decision-makers in the implementation of new operational concepts.
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