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Abstract: Impact factor as an indicator of efficiency or sustainability is entirely correlated with the 
continuous development of the smart city concept technology application. Intelligent transportation 
systems (ITSs) and particularly autonomous vehicles are expected to play an important role in this 
challenging environment. Fast and secure connections will be pivotal in order to achieve this new 
vehicular communications’ application era. The use of millimeter-wave (mmWave) frequency range 
is the most promising approach to allow these real-time, high-demand applications that require 
higher bandwidth with the minimum possible latency. However, an in-depth mmWave-channel 
characterization of the environment is required for a proper mmWave-based solution deployment. 
In this work, a complete radio wave propagation channel characterization for a mmWave smart 
parking solution deployment in a complex outdoor environment was assessed at a 28 GHz 
frequency band. The considered scenario is a parking lot placed in an open free university campus 
area surrounded by inhomogeneous vegetation. The vehicle and vegetation density within the 
scenario, in terms of inherent transceivers density and communication impairments, leads to overall 
system operation challenges, given by multiple communication links operation at line-of-sight 
(LOS) and non-line-of-sight (NLOS) conditions. By means of an in-house developed 3D ray 
launching (3D-RL) algorithm, the impact of variable vegetation density is addressed, providing 
precise modelling estimations of large-scale multipath propagation effects in terms of received 
power levels and path loss. The obtained results along with the proposed simulation methodology 
can aid in an adequate characterization of an mmWave communication channel for new vehicular 
communications networks, applications, and deployments, considering the outdoor conditions as 
well as the impact of different vegetation densities, for current as well as for future wireless 
technologies. 

Keywords: propagation modelling; millimeter wave; 3D ray launching; smart parking; vegetation 
environment; vehicular communications 

 

1. Introduction 

With the hope to guide our future towards greater sustainability, the use of the recent advances 
in communication technologies will empower the dream of real smart cities. In this envisioned 
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environment, technology and creativity come together with the aim of making society more efficient 
and sustainable. As part of this goal, intelligent transportation systems (ITSs) will employ the 
application of sensing, analysis, and control over vehicular environment entities (e.g., vehicles, traffic 
signs, parking lots, route controllers) to make transportation more efficient and secure. Considering 
that by 2050 about 68% of the world’s population will live in cities [1], it is not surprising that ITSs 
will be essential within the main structure of a smart city. With the advent of autonomous vehicles 
within this ITS context, the tasks of driving and operating the vehicle will be less and less in the hands 
of the human driver. At that point, fully automated vehicles will communicate wirelessly to other 
vehicles (V2V) or infrastructures (V2I) as a way to gather the required information to act under 
different conditions, environments and constraints. Although there are already so-called smart 
parking lots, it is with the arrival of fully autonomous vehicles that these spaces will achieve their 
full potential. The requirements of autonomous vehicles in an intelligent parking environment are 
closely related to the demands of automated driving on a daily basis, i.e., utilities such as multiple 
sensors and raw cameras data and processes interacting between V2V and V2I communication links.  

In this sense, the demands for higher capacity/bandwidth and low latencies in communication 
systems increase dramatically each year, where predictions for future smart cities place more stress 
in these aforementioned demands. In the autonomous vehicular environment domain, the need for 
data access in real time, raw video feed information, real-time route control, as well as high 
throughput and time constraints, has led to the proposal of millimeter-wave (mmWave) frequency 
bands as a way to tackle these requirements. The frequency spectrum in mmWave bands provide 
large bandwidths that can allocate communications systems achieving high throughput and low 
latencies; the adoption of these bands is envisioned to be a fundamental part of the 5th generation 
(5G) of future communications. Despite these advantages, communication in the mmWave frequency 
bands presents high penetration losses and poor diffraction, which imposes many challenges for its 
implementation. Moreover, propagation characteristics in mmWave bands are significantly different 
from those in micrometric frequencies. Given these circumstances and traits, there has been an 
increase in both academic and industry interest in these frequencies bands. Thus, it is undoubtedly 
essential to characterize communication in these high frequency bands, specially under the effects of 
non-line of sight (NLOS). It must be remarked that the shadowing of the radio signal in the mmWave 
range can induce high losses in the received signal strength, which is more aggravated with the use 
of directional beams, as this is expected in the mmWave multiple input multiple output (MIMO) 
communication systems. 

Particularly in the autonomous vehicular context, the study of blockage in mmWave frequency 
bands mostly encompasses blocking by other vehicles or buildings, and in some cases taking into 
account the vegetation. In addition to this, most investigations address typical environments such as 
rural, urban, and highways, but works that are focused on other less common circumstances such as 
parking lots, tunnels, and roundabout are scarce. Sceneries such as smart parking spaces have been 
addressed in the literature at micrometric frequencies in works such as [2,3]; in these papers, an 
empirical approach was followed, showing the obtained measurement results in two indoor parking 
areas. Regarding the mmWave frequency range, the work presented by the authors in [4] analyzes 
the path loss (PL) in an indoor parking environment at frequencies of 26.5 GHz and 38.5 GHz. In the 
literature, outdoor parking spaces are less considered, usually characterized by spacious zones and 
often with abundant inhomogeneous vegetation, which is challenging in terms of channel modelling 
and propagation characterization. In [5], the path losses in an outdoor parking environment at 28 
GHz and 38 GHz was inspected employing a measurement campaign, and the PL adjustment to the 
close-in models (CI) free space reference and the floating-intercept (FI) PL model was provided. In 
addition, due to the presence of vegetation in outdoor parking areas, the communication channel is 
affected by an increase in the probabilities of NLOS, temporal, and angular dispersion parameters 
[6]. In general, the impact of vegetation density in the mmWave frequency range is still an issue that 
needs further investigation; the vegetation density effects over the wireless channel characteristics is 
an important aspect to take into account in this technology requirements as a communication 
medium in outdoor environments. 



Eng. Proc. 2020, 2, 81 3 of 7 

 

In this work, the mmWave frequency band vegetation density impact in an outdoor parking lot 
is assessed by means of an in-house developed 3D ray launching (3D-RL) algorithm. Discussion of 
the influence of vegetation density is presented, showing that the obtained results can aid in an 
adequate characterization of the mmWave communication channel for new vehicular 
communications networks, applications, and deployments, considering outdoor conditions. 

2. Scenario Description 

As commonly found in outdoor parking lots, trees planted in dividing parking lots serve both 
as decorative and to provide shade. These trees’ barriers are frequently composed of a single line of 
trees and shrubs. The location and densities of these obstacles can vary immensely and in different 
distributions. In this work, in order to analyze these channel modeling impairments and effects, an 
outdoor parking lot placed inside the Monterrey campus of Tecnologico de Monterrey was 
considered. The represented vegetation is composed of 6.2 m height trees with vast foliage and small 
1.2 m bushes. For comparison, two different scenarios are presented, with differing volumetric 
vegetation densities. In the first one, trees and shrubs are distributed continuously, occupying the 
entire available area of the barrier between the parking lot. This distribution density constitutes a 
total of 8 trees and 9 shrubs, covering a volumetric density of 378.8 m3. For the second scenario, the 
distribution density is decreased to approximately one third (33%), composed of 3 trees and 3 shrubs, 
for an approximate volumetric density of 138.4 m3. As an example, Figure 1 presents the rendered 
view of the high vegetation density considered scenario in the parking lot. 

 
Figure 1. Rendered view of the parking lot considered scenario for simulation. Transmitter and 
receiver positions are presented, and the different communications beams are assessed. 

An in-house deterministic 3D-RL algorithm was used to assess the vegetation density impact at 
28 GHz frequency band for the smart parking solution deployment. The detailed information of the 
3D-RL algorithm and its validation in vehicular environments can be found in [7,8]. For the 
simulation purpose, a transmitter antenna placed in a streetlight at 3 m height was considered, as 
well as several NLOS challenging receiver locations in the scenario. Different directional beams were 
assessed, aiming at points located on a typical vehicular receiver (1.5 m height) on the other side of 
the vegetation barrier according to the arrangement presented in Figure 1. The most relevant 
simulation parameters are presented in Table 1. 
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Table 1. Simulation parameters. 

Parameters Values 
TX power 25 dBm 

Carrier frequency  28 GHz  
Bit rate 4.62 Gbps  

Antenna type/gain Directional/20 dB 
3D ray launching: angular resolution/rebounds 0.2 degree/6 

Scenario size/unitary volume analysis (54 × 42 × 15) m/1m3 (1 × 1 × 1) m 

3. Results and Discussions 

As shown in Figure 1, the radiation beams are launched to locations placed beyond the tree 
barrier; taking into account the range of paths in each beam, the worst-case scenario is chosen as a 
reference for path losses through the vegetation. In the shortest direction, the tree barrier is located 
at a distance of approximately 11 m from the transmitter. Using this metric, the path losses are 
obtained in both scenarios (high vegetation density and low vegetation density) in each beam. Figure 
2 show both scenarios in terms of the PL across each of the beams. In addition, the fit to the close-in 
path loss model for each radiation pattern is plotted, according to Equation (1). 𝑃𝐿஼ூሺ𝑓, 𝑑)ሾ𝑑𝐵ሿ = 𝐹𝑆𝐿𝑃൫𝑓, 𝑑ሺ1𝑚)൯ሾ𝑑𝐵ሿ + 10𝑛 logଵ଴ሺ𝑑) + 𝑋ఙ, (1)

where 𝐹𝑆𝐿𝑃൫𝑓, 𝑑ሺ1𝑚)൯ = 20 logଵ଴ ସగ௙௖  denotes the free-space path loss in dB at a transmitter–receiver 
(TR) separation distance of 1 m at the carrier frequency f, c is the speed of light, n is the path loss 
exponent (PLE), d is the 3D separation distance between the transmitter and the receiver, and 𝑋ఙ is 
the shadow fading standard deviation for large-scale signal fluctuations. The PL described in Figure 
2 shows attenuations under line-of-sight (LOS) conditions up to 11 m, where the tree barrier is 
located. Under these conditions, the wireless communications channel behaves with a mean PL 
exponent (𝑃𝐿𝐸തതതതതത) between 1.7 and 1.8, describing conditions better than free-space losses; this is 
related to strong reflections on the bodies of parked vehicles. Beyond the barrier, the wireless link is 
strongly affected in both coefficient parameters, i.e., the PLE and path dispersion. In the case of the 
low vegetation density scenario (Figure 2a), the PLE attains an average of 2.5, and the standard 
deviation reaches an average value of 9.08 dB. For the scenario with high vegetation density (Figure 
2b), the average PLE approaches a score of 2.79, and the average standard deviation is around 11.5 
dB. This difference in PLE is represented in Figure 3, where the effects on PL in both scenarios are 
shown, starting from the 12 m mark (after the vegetation barrier), together with the PL fit to the CI 
model. 

The difference in the average settings in the different scenarios is 4 dB, taking into account the 
worst scenario in both situations (which in the case of low vegetation may also include obstructions). 
In the case of standard deviation, the high-density scheme incurs an increase of approximately 2.5 dB 
over the low-density scenario. Taking into account the continuous distribution of trees in the case of 
maximum volumetric density and the reduction to one-third of this density, Table 2 reflects the 
summary of the effects analyzed under these conditions. 

Table 2. Simulation results for the differing vegetation volumetric densities. 

Parameter High Density Low Density Difference 𝑃𝐿𝐸തതതതതത 2.79 2.5 0.29 𝑋ఙതതതത 11.56 dB 9.08 dB 2.48 dB 
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Figure 2. Path loss for all five beams and both vegetation density, listed as (a) high vegetation density 
scenario and (b) low vegetation density scenario. 

 

 

Figure 3. Close-in (CI) path loss model fit for both scenarios. 
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4. Conclusions 

In outdoor parking scenarios, the use of barriers with abundant vegetation is common practice. 
The communication of directional beams in the mmWave frequency bands for V2I communications 
in smart parking lots can be strongly affected by these vegetation barriers. The characterization of the 
different vegetation densities and their effects on the large-scale channel parameters can grant 
important information throughout the deployment of communications under outdoor conditions. 
This article presents the worst-case PL analysis, as we considered different vegetation densities. From 
the results, the high vegetation density case presents an increase in the PL average of 4 dB and an 
increase in the standard deviation of 2.5 dB over the low vegetation density scenario. The obtained 
results can be applied in similar vegetation conditions to characterize and design V2I communication 
systems in smart parking lots under vegetation obstructions effects. As a future work, a further study 
is intended to expand this presented analysis to wider varieties of vegetation and vehicle densities, 
providing coverage/capacity analysis and precise modelling estimations of small-scale and large-
scale multipath propagation effects in terms of received power levels and time domain 
characteristics. 
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