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Abstract: In the present study, a numerical analysis has been conducted to investigate the hydro-
dynamic and thermal energy transfer capacity of a vortex formed under the effect of gravity. For
this purpose, the study uses a gravitational water vortex heat exchanger (GWVHE), which includes
baffles around a cylindrical basin in which a water vortex is formed under the effect of gravity. The
results have been examined for different inlet boundary conditions based on flow and temperature
to determine the strength of vortex formation and comparative energy transfer rate for both fluid
domains. A strong vortex is formed in the basin at a height to diameter ratio between 0.41 and 0.54
with a minimum inlet mass flow rate of 0.005 kg/s, which effectively increases the energy exchange
potential due to the centrifugal effect. The reasonable energy agreement has been obtained for the
minimum flow rates of both fluid domains; however, the thermal energy losses are increased with
the increase in the inlet mass rate of the hot domain, due to the reduction in the time of contact. The
existence of an acceptable energy balance and strong vortex formation at a minimum flow rate sparks
the need for a new configuration to enhance the thermal performance of GWVHE.

Keywords: strong vortex formation; basin with baffles; energy balance; heat transfer rate; gravita-
tional water vortex heat exchangers

1. Introduction

Heat exchangers (HEs) are the devices that are used in the heat transfer process
without physically mixing the fluid streams. The classification of HEs is usually based on
the flow arrangement or the design configuration. Parallel flow, counter flow, and cross
flow HEs are the examples of flow arrangement-based HEs, whereas compact types, shell
and tube HEs are classified according to their design configuration [1]. The direction of two
fluid streams and the structural configuration of HEs are very important features when
improving the heat exchange process. Active and passive approaches are used to reduce
the thermal losses, as well as to improve the heat transfer performance in various thermal
systems [2].

Another important flow configuration in HEs is a vortex flow. The fluid circulates
around a central axis in a vortex flow, forming either a forced vortex or a free vortex. The
free vortex is generated naturally, whereas the forced vortex is formed because of solid
body rotation. The free vortex can be artificially created if a viscous fluid flows through
a hole at the bottom of a tank under the force of gravity [3,4]. The present study at first
determines the strength of a strong vortex under the effect of gravity called a gravitational
vortex and then investigates its thermal energy exchange capacity using a GWVHE [5]. A
new design of GVHE with baffles on the outer side of the cylinder and a height to diameter
ratio of 0.54 has been employed to numerically investigate the energy balance by varying
the inlet conditions.
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2. Mathematical Modeling and Governing Equation

The 3D computational model of GWVHE used in the present study is shown in
Figure 1. The height and diameter of the basin are 380 mm and 700 mm, respectively.
There are two fluid domains separated by a solid domain. In both fluid domains, the
fluid is water. The outer cylinder with baffles contains hot water, while the central basin
cylinder has cold water. The solid domain is assumed to be made of steel. To effectively
induce the gravitational effect, the top interface of the basin cylinder remains open to
the atmosphere. Steady state heat transfer analysis of the GWVHE is performed using
COMSOL-Multiphysics (V 6.0) and a user control mesh is applied on each domain to
discretize the geometric model.
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The values for the constants are taken as σk = 1.0, σɛ = 1.3, Cɛ1 = 1.44, ܥઽ2 = 1.92 and ߤܥ 
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where ܶf, ݇f, and ࢖ܥf denote the temperature, thermal conductivity, and specific heat, re-
spectively. 
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The values for the constants are taken as σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 and
Cµ = 0.09.

2.2. Heat Transfer Modeling

The energy equations for fluid and solid domains are given as the following equations,
respectively [2].

ρCp f

(
Vr

∂Tf

∂r
+

Vθ

r
∂Tf

∂θ
+ Vz

∂Tf

∂z

)
= k f

(
1
r

∂

∂r

(
r

∂Tf

∂r

)
+

1
r2

∂2Tf

∂θ2 +
∂2Tf

∂z2

)
(3)

ks

(
1
r

∂

∂r

(
r

∂Ts

∂r

)
+

1
r2

∂2Ts

∂θ2 +
∂2Ts

∂z2

)
= 0 (4)

where Tf, kf, and Cpf denote the temperature, thermal conductivity, and specific heat,
respectively.

3. Results and Discussion

Figure 2a–d show the velocity distributions in the form of contours that make the air
core at the mid-section from top to bottom, indicating the formation of a strong vortex.
The strong vortex formation in the basin is achieved at all inlet mass flow rates of the cold
domain from 0.005 to 0.5 kg/s and also the ratio of height to diameter is calculated, ranging
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from 0.41 to 0.54 for the strong vortex formation. The strength of the gravitational vortex
enhances the heat transfer effect due to the centrifugal phenomena.
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Figure 3a–d show the temperature distributions of the cold fluid domain at constant
inlet mass flow of the hot domain, which represent the temperature gradient at the mid-
section of the basin. It is observed from the simulation analysis that the highest temperature
gradient is obtained at the lowest inlet mass flow rate of 0.005 kg/s. This shows that the
time of contact between both fluids is very important to exchange energy.
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Figure 4a,b show the energy balance comparison of both fluid streams with
(0.005 kg/s to 0.5 kg/s) the inlet mass flow rate of the cold domain. However, the in-
let mass flow of the hot domain varies from 0.002 kg/s to 2.29 kg/s. It can be observed that
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at the smaller flow rates of both domains, the thermal losses are less but as the hot side
inlet mass flow rate increases, the energy losses to the environment are increased.
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