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Abstract: There have been many studies performed on the optimal design and expansion of a natural
gas transmission network; however, very few works have addressed the problem of the reinforcement
of an existing natural gas transmission network with limited application. This study is focused
on the reinforcement of an existing natural gas transmission network with the aim to minimize
investment cost. The compressor stations have been assumed operational in either direction. A
mathematical model was developed for the problem, which is non-convex mixed integer nonlinear
programming (MINLP) in nature; therefore, a convex relaxation was formulated to solve the problem
easily in General Algebraic Modeling System (GAMS, GAMS Development Corp., Fairfax, VA, USA)
using DICOPT and CONOPT solvers. The model was applied to a small transmission network for
validation and the results proved its efficiency.

Keywords: natural gas; transmission network; reinforcement planning; optimal expansion; mixed
integer nonlinear programming

1. Introduction

The natural gas transmission network is the most critical part of a gas supply chain
network. The different gas supply sources including the indigenous gas-producing sources,
Liquefied Natural Gas (LNG) terminals, underground storage, and international pipeline
entry points are connected to a natural gas transmission network at borders. Major indus-
trial consumers such as gas-fired electric power plants, and fertilizer and cement plants are
directly connected to a natural gas transmission network. Therefore, its efficient operation
and optimal expansion are very critical to ensuring an uninterrupted supply of natural gas
as well as minimal cost [1]. Natural gas transmission networks are high-pressure networks
spanning entire countries involving large distances. The natural gas transmission networks
expanded with time due to the addition of the new demand centers and the enhanced load
at the existing ones. The flow dynamics of natural gas through a pipeline are very complex
due to the nonlinear relationship between the natural gas pressure and flow [2]. Further,
the combinatorial nature of pipeline diameters makes the problem mixed-integer in na-
ture [3]. These characteristics make the problem an Mixed Integer Nonlinear Programming
(MINLP), which further needs reformulations and relaxation for efficient results. In litera-
ture, the unidirectional operation of the compressor stations has been considered, which
makes the compressor station nonoperational in the reverse direction, hence, it has no role
in the capacity of the cyclic network in the reverse direction. In this study, it is assumed that
they can operate in either direction to fully utilize their capacity, hence, the network. The
objective of this study is to propose a mathematical formulation for the optimal expansion
of a gas transmission network while considering the reinforcement of the existing network
with the bidirectional flow of the compressor stations. The substantial costs can be saved
by even minor improvements in design and operation conditions. The total cost can be
minimized by optimizing system variables while ensuring that all network constraints are
satisfied [4]. A typical natural gas transmission network is shown in Figure 1.
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Figure 1. A Cyclic Gas Network. 

2. Problem Formulation and Mathematical Modeling 
We are dealing with the reinforcement of an existing gas transmission network with 

the following assumptions: The network under study is a cyclic gas network and is in a 
steady-state condition. The gas composition and temperature are assumed as constant 
over time and space. The variations in elevation of the network are neglected and it is 
considered horizontal. The demand at each delivery node must be fully satisfied, i.e., no 
shortages are allowed. 

Let, 
i, index of the nodes; a, index of the arcs; 
N, the set of nodes; 
Ns, the set of supply nodes; 
Nt, the set of transit nodes; 
Nd, the set of demand nodes; 
A, the set of arcs; 
Apipe, the set of pipe arcs; 
Acomp, the set of compressor arcs; 
D, the set of commercially available diameters of pipe; 
Qa, the flow rate in a pipe (million standard cubic feet per day); πୟ୧ , the inlet square pressure (or inlet head) of the pipe (psi); πୟ୨ , the outlet square pressure (or outlet head) of the pipe (psi); 
ya, binary variable showing gas flow direction in a pipe; 
ka, auxiliary variable for a pipe arc; L, the pipe length (miles); 
Da, the internal diameter of the pipe (inches); 
M, nodes-arcs incidence matrix; 
b, the vector of supply or demand; 
Pmax, the maximum pressure at a node (psi; 
Pmin, the minimum pressure at a node (psi); π୧୫ୟ୶, the maximum pressure head limit; π୧୫୧୬, the minimum pressure head limit; 
Ca, the cost of pipe per mile per inch; 

2.1. Objective Function 
The objective function is to minimize the construction cost of new pipelines, which is 

given by: 
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2. Problem Formulation and Mathematical Modeling

We are dealing with the reinforcement of an existing gas transmission network with
the following assumptions: The network under study is a cyclic gas network and is in a
steady-state condition. The gas composition and temperature are assumed as constant
over time and space. The variations in elevation of the network are neglected and it is
considered horizontal. The demand at each delivery node must be fully satisfied, i.e., no
shortages are allowed.

Let,

i, index of the nodes; a, index of the arcs;
N, the set of nodes;
Ns, the set of supply nodes;
Nt, the set of transit nodes;
Nd, the set of demand nodes;
A, the set of arcs;
Apipe, the set of pipe arcs;
Acomp, the set of compressor arcs;
D, the set of commercially available diameters of pipe;
Qa, the flow rate in a pipe (million standard cubic feet per day);
πi

a, the inlet square pressure (or inlet head) of the pipe (psi);

π
j
a, the outlet square pressure (or outlet head) of the pipe (psi);

ya, binary variable showing gas flow direction in a pipe;
ka, auxiliary variable for a pipe arc;
L, the pipe length (miles);
Da, the internal diameter of the pipe (inches);
M, nodes-arcs incidence matrix;
b, the vector of supply or demand;
Pmax, the maximum pressure at a node (psi;
Pmin, the minimum pressure at a node (psi);
πi

max, the maximum pressure head limit;
πi

min, the minimum pressure head limit;
Ca, the cost of pipe per mile per inch.

2.1. Objective Function

The objective function is to minimize the construction cost of new pipelines, which is
given by:

Min Z = ∑
a∈Apipe

Ca·Da·La (1)
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2.2. Constraints

There are some limitations posed by the technicalities of a gas transmission network,
therefore, the model is subject to the following constraints:

πi
a − π

j
a = βQa|Qa|, ∀ a ε Apipe (2)

πmin
i ≤ πi ≤ πmax

i , ∀ i ε N (3)

τmin
a ≤ τa ≤ τmax

a , ∀ a ε Acomp (4)

MQ = b (5)

where β is a constant in the pressure loss equation; whereas, the modulus of Qa shows the
direction of gas flow in a pipe arc. Further, Equation (5) summarizes flow balance equations
at each node.

3. Solution Methodology

The relation between the gas flow and pressure makes the problem non-convex in
nature, which is difficult to solve; therefore, the convex relaxation is applied to the constraint
(2) of the model, then, solved in GAMS.

3.1. Convex Relaxation

The model with the convex relaxation of (2) is as below:

Min Z = ∑
a∈Apipe

Ca ×Da·La (6)

ka = βQ2
a (7)

ka ≥ π
j
a − πi

a + 2ya

(
πi

min − πj
max

)
(8)

ka ≥ πi
a − π

j
a + 2(ya − 1)

(
πi

max − πj
min

)
(9)

ka ≤ π
j
a − πi

a + 2ya

(
πi

max − πj
min

)
(10)

ka ≥ πi
a − π

j
a + 2(ya − 1)

(
πi

min − πj
max

)
(11)

πmin
i ≤ πi ≤ πmax

i , ∀ i ε N (12)

τmin
a ≤ τa ≤ τmax

a , ∀ a ε Acomp (13)

MQ = b (14)

The Equations (8)–(11) are called McCormick envelopes for the equation
ka = 2(ya − 1)

(
πi − πj

)
[5]. These envelopes result in exact reformulation because it

is the product of a binary variable with a continuous variable.

3.2. GAMS as Modeling Language

The mathematical model developed in Section 3.1 is now modeled into a computer
program in General Algebraic Modeling System (GAMS) [6], which is then solved through
DICOPT and CONOPT solvers. GAMS is a high-level modeling language used for mathe-
matical optimization. DICOPT is DIscrete Continuous OPTimizer that solves Nonlinear
Programming (NLP) and Mixed Integer Programming (MIP) sub-problems alternatively.
CONOPT is used due to a large number of nonlinear constraints [7].

4. Computational Experiments and Results

All the computational experiments were performed on a small gas transmission
network with 16 nodes and 15 arcs. The details of some arcs are shown in Table 1. Two
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benchmarks were created from the base network; (i) the enhancement in diameter of the
segment s1 which consists of arcs 1 to 3 as well as the higher pressure at the supply nodes
(ii) the installation of a compressor station at the transient node to boost the pressure. The
results show that the first benchmark is feasible, whereas, the second benchmark was
infeasible despite increasing the pressure. The optimal solution for the first benchmark was
achieved at a 12-inch diameter [8,9].

Table 1. Arcs details.

Arc Length (Miles) Arc Resistance

1.2 2.78 4.45 × 10−8

2.3 13.51 2.16 × 10−7

3.4 2.7 4.32 × 10−8

5. Conclusions

In this study, we developed a mathematical model with convex relaxation for the
reinforcement of a gas transmission network with a minimal investment cost objective. The
computational experiments showed that the developed model is an efficient tool to solve
the problem of the optimal expansion of a gas transmission network in a very short time.
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