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Abstract: At the current state of the art, the roll bending of heavy plates is mainly controlled and
monitored manually. By automating these tasks, the economic efficiency of the process can be
increased significantly. For this reason, the industry is looking for a solution to modernize the used
machine tools. Therefore, in this paper, an AI-based prognosis model and an associated optical
monitoring system were developed. The prediction model assists the plant operator by calculating
the expected forming result. Here, it is trained with empirical process data, determined by the
monitoring system. The two components were tested numerically and experimentally.
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1. Introduction

With roll bending, plates are rounded along their length on several rotating rolls.
Especially in the heavy plate sector (t > 3 mm), the process covers a very wide range of
applications. Here, it is used, for example, to produce thick-walled tubes and shells for the
maritime sector, the renewable energies sector, and the construction industry.

A major problem associated with the roll bending of heavy plates is the high number
of manual manufacturing steps. For example, the process control is carried out manually,
because the used roll bending machines do not have any objective prognosis systems, that
can support the plant operator in setting up the machine. Furthermore, the result control
is also carried out manually. Here, templates for the target radius of curvature are used,
which are held to the plate for a target-actual comparison (cf. Figure 1).
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Figure 1. Roll bending machine (left) and result control with templates (right).

Due to the many manual manufacturing steps, the efficiency and accuracy of the
process are largely dependent on the experience of the machine operator. In this context, it
should be emphasized, that human errors are especially costly in the heavy plate sector,
where material-intensive plates are processed in small batches. Consequently, there is great
potential for optimization by automating the sub-steps of the manufacturing process. For
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this purpose, there is a demand from the industry for automation solutions to upgrade the
used roll bending machines. In this paper, an approach for this is presented.

2. State of the Art

The major challenge regarding the automation of roll bending is that the forming
process is significantly influenced by stochastic effects. These mainly include batch-specific
fluctuations of the material properties of the plates (strength, thickness, etc.), but also
fluctuations of the properties of the machine tool (temperature of the hydraulic oil, etc.).
In the case of conventional manual control of roll bending, the influence of these effects
is recognized by the plant operator and compensated by an adequate adjustment of the
machine. To automate the process, this task must be accomplished by technical systems.

In the past, a lot of research work has been invested in the solution of this problem.
Already in 1983, Hardt [1] described the limitations of control approaches that are based
solely on the prognosis of predictive models. According to his research, as shown in
Figure 2, the combination of a predictive model with a measurement system is necessary in
order to calibrate the model and thus to take into account the influence of stochastic effects.
In this respect, the modeling complexity can be reduced by more directly measuring the
forming result.
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In some studies, the approach shown in Figure 2 has already been implemented in
control concepts for the roll bending of thin metal sheets (t < 3 mm) [2–5]. Here, numerical
models were used as prediction models. In [3,5], for example, models were used in which
the sheet is discretized into rigid segments that can rotate relative to each other. The angle of
rotation between the segments is calculated using a moment–angle relationship that corre-
sponds to the elastoplastic behavior of the sheet material according to Ludwik’s elementary
bending theory [6]. For the complementary measurement system, different approaches
have been tested. Hardt [2] and Liewald [3] used tactile methods, where additional rollers
were applied to the sheet to determine the sheet contour. Liewald [3] and Egelkamp [4]
filmed the springback sheet contour at the roll exit with camera systems and determined
the sheet curvature with software using edge-finding algorithms. Strassmann [5] used the
fact, that the forming result correlates with the clamping force of the sheet in the roll gap
and the bending force of the lateral bending roll. To measure the forces, load cells and strain
gauges were implemented in the roller bearings. A fuzzy model was used to calculate the
associated sheet curvature. In order to correct the calculations of the prediction models on
the basis of the recorded measurement data, adaptive correction systems were used. For
example, knowledge-based algorithmic controllers [3] and artificial neural networks [5]
came into use.

Based on the above-mentioned research work, the establishment of fully automatic
two- and three-roll bending machines for the roll-bending of thin metal sheets has already
been achieved in the industry [7]. However, due to the larger dimensions, wider range of
applications, and deviating machine designs (three- and four-roll systems), the adaptation
for heavy plate forming is only possible to a limited extent. In the heavy plate sector,
semi-automatic four-roll bending machines have only been available since 2017 [8,9]. In
these, iterative FE simulations are used for the forming prediction. An AI-based correction
system enables the improvement of the predictions based on process data on plates of
the same batch. The disadvantage is that the forming result still has to be measured
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manually. In addition, the acquisition of such a new roll bending machine requires high
investment costs, whereas the manufacturing companies already have functioning and
highly durable machines.

For the above reasons, there is a need for further research regarding the automation of
roll bending of heavy plates. In this respect, cost-effective solutions for upgrading existing
roll bending machines are of particular interest to SMEs with limited investment budgets.

3. Automation Approach

In this paper, an automation approach for the upgrading of 4-roll bending machines
is developed. For this purpose, it meets the criteria of low investment costs, simple
installation, and flexible functionality, independent of the machine size. To achieve an
objectively functioning process control, the approach involves the use of an AI-based
prediction model. This can calculate the expected forming result for the plant operator and
thus support him in setting up the machine. Following a paper on free bending of large
shipbuilding panels, the prognosis model has two layers [10]. First, a geometric model
is introduced to quantify the geometric shape of formed plates. In the second layer, this
model is parameterized with the help of an ANN. To generate process data for the training
of the ANN, a non-contact optical process monitoring system was developed.

3.1. Characterization of the Forming Process

During roll bending with a 4-roll bending machine, the plate is clamped between two
centric rolls and bent locally by the infeed of a side roll. Depending on which side roll is
used, a distinction is made between two process variants (cf. Figure 3): When the front side
roll in relation to the rolling direction is used, this is called inlet side bending. Bending
with the rear side roll is referred to as outlet side bending.
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For both variants, the mechanical working principles are shown in Figure 3. The
arrows show the resulting roll forces and torques. The blue bands at the plate edges
illustrate the extent of local deformation over the plate length. For both variants, the
maximum deformation is reached at the contact point with the top roll. Behind this so-called
bending point, elastic springback takes place, so that the amount of elastic deformation
steadily decreases. At the last roll contact in the rolling direction, the amount of elastic
deformation is finally zero. Behind this point, only plastic deformation occurs.

The bending variant is of great importance for the measurement of the forming result.
Depending on the bending side, the area in which elastic springback takes place changes.
Consequently, the area in which the plate assumes its final contour and in which the
forming result can be measured also changes. Besides, it should be noted that during roll
bend-ing there is a drag distance between the point where the maximum force is applied
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(bending point) and the point of complete elastic springback. This results in a delay when
measuring the forming result.

Furthermore, the bending variant has a great influence on the forming result. To
demonstrate this, two FE simulations were carried out using the FE model from [11]. In
these, a 30 mm thick plate made of S350 was formed, whereby in each simulation a different
bending variant was used. It should be emphasized that the feed distance of the side roll
remained the same. The results are compared in Figure 4, which shows the distribution of
the von Mises stress in the plate cross-section around the roll gap.
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Based on the red stress bands, during inlet-side bending, significantly higher stresses
are achieved, especially in the middle plate fibers. Behind the contact point with the top
roll, the high stresses in the outer plate fibers are reduced by plastic yielding. This results
in a significantly higher deformation.

3.2. Geometric Model of the Plate

To quantify the formed contour of a plate and make it accessible for an ANN, a
geometric model was developed. With this, the contour of a plate can be described as
a function of the local radius of curvature over the plate length. Therefore, the plate is
discretized into rigid segments, which can rotate in relation to each other. The angle
between the individual segments corresponds to the local radius of curvature.

Figure 5 shows the procedure for the generation of the plate contour from a given
function of local plate curvature versus plate length. The function is discretized into
individual segments of the length L0 and the mean value of the curvature ri is calculated in
each segment i. Here, the discretization fineness determines the accuracy of the contour
generation. For each segment I, a pair of two isosceles triangles with the leg length ri and
the base length L0 is formed. To create the contour of the plate, these triangle pairs are
fitted into each other as a chain starting from segment 1. The triangle pair of the segment
i+1 is fitted into the existing chain so that the base of its left triangle overlaps the base of the
last triangle. The combined contour of the bases of all triangles (black line) corresponds to
the contour of the plate. This can easily be solved mathematically since the interior angles
and side lengths of all triangles are known.
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In the reverse case, to obtain the function of plate curvature versus plate length from a
given plate contour, a procedure from [12] is used. According to this, the local radius of
curvature of a plate section with the initial length dL can be calculated using the strains of
the compressed inner side εin and the stretched outer side εou. With this, the inner radius
rin of a plate section is obtained from the following equation:

rin = t · 1 + εin
εou − εin

(1)

where t is the thickness of the plate.

3.3. Artificial Intelligence

The goal of the developed ANN is the prediction of the expected local plate curvature
over the normalized plate length in dependence of defined input variables. According
to [5], the basic idea of modeling with an ANN is to provide a predefined model structure
with a set of data, of which the information is extracted with the help of a complex network
of signal processing units (artificial neurons). The ANN can thus learn “independently” to
approximate a solution for a given problem.

For accurate forming predictions, the model must consider the relevant variables
influencing the forming result. In [13], it was shown by means of a numerical sensitivity
analysis for the roll bending with a 4-roll bending machine, that the feed motion of the
lateral bending roll, the plate dimensions and the mechanical properties of the plate
material have a great influence on the forming result. As shown in Section 3.1, the bending
variant is also of great importance. Accordingly, these variables shall be used as input
variables for the ANN. The influence of the unpredictable stochastic fluctuations of the
plate and machine properties can be detected empirically via the monitoring system and
thus supplied back to the prognosis model.

For the training of the ANN, synthetic data from a FE study [13] was used. This
data was obtained by analyzing 100 forming simulations executed with the software LS
DYNA. In these, an outlet side bending and single rolling of a plate with a 4-roll bending
machine were simulated. An overview of the used training data is shown in Table 1. The
normalized plate length is an invariant input variable. The target variable of the model is
the local radius of curvature of the plate, which is calculated as a function of the normalized
plate length.

Table 1. Parameter range of the training data for the ANN.

Parameter Type of Data Parameter Range

plate length in mm input 2660 . . . 5250
plate width in mm input 1400 . . . 4000

plate thickness in mm input 30 . . . 100
material input S355, S690

side roll feed angle in degree 1 input 16 . . . 61.9
bending variant input outlet side bending

normalized plate length input 0 . . . 1
local radius of plate curvature in mm target -

1 The feed of the side roll is specified as an angle, since the side rolls in the considered roll bending machine are
fed in an arc shape.

For the training of the ANN, the dataset was randomized and divided into 70%
training data and 15% validation and test data each. The Bayesian regularization algorithm
was used for training. A feedforward network with two layers was selected as the network
topology, with the first layer consisting of 20 neurons with sigmoidal activation functions
and the second layer consisting of one neuron with a linear activation function. It was
found that with this topology, a very accurate fit to the training data (R = 0.98) and at the
same time a good generalization ability can be achieved.
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3.4. Developed Monitoring System

In this paper, a monitoring system was developed that allows the measurement of
the forming result in real time. Thus, it can be used for the generation of process data for
the training of the ANN. During the conceptual design, attention was paid to a simple
installation, low cost, and flexible functionality independent of the machine size. Under
these aspects, a non-contact measuring system based on a laser distance sensor (LDS) of
the type OM70-L1500.HH1500.VI from Baumer was developed.

With the developed monitoring system, the plate curvature cannot be measured
directly. Instead, it is determined iteratively with the aid of a numerical calculation routine.
This essentially involves fitting a circle fit according to the Levenberg-Marquardt algorithm
through defined plate points and subsequently evaluating whether this fit can match the
actual contour of the plate. The radius of a verified circle fit is output as the measured
value for the plate curvature.

The working principle of the calculation routine is shown schematically in Figure 6.
The monitoring system measures the plate section between the points 1 and 2 marked in
the figure. It should be emphasized that the monitoring system is thus primarily designed
for use in inlet-side bending, since in this case almost no elastic deformation is measured.
In contrast, when bending on the outlet side, the measured area overlaps the zone of elastic
springback (cf. Figure 3).
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Figure 6. Working principle of the developed monitoring system.

With the developed monitoring system, it is possible to measure which curvature is
formed into the plate at the bending point. To be able to assign this curvature measurement
to a position on the plate, an incremental encoder of the type RV3100 from ifm electronic is
used. This is mounted on the side roll enabling it to measure the feed of the plate.

4. Numerical and Experimental Testing
4.1. Testing on FE Simulation Data

The accuracy of the ANN predictions was investigated using FE simulations. To
this end, new parameter configurations were selected within the trained parameter range,
which, however, were not part of the database used for the training. For these parameter
configurations, predictions of the forming result were made with the ANN. To verify the
predictions, additional FE simulations were performed.

Figure 7a shows exemplary results for two parameter configurations which differ
only in the feed angle of the side roll with 30◦ and 40◦, respectively. The simulated plate
was made of the material S350 with dimensions of 3750 × 1400 × 75 mm. The curves
show that the ANN was able to predict the calculations of the FE simulation very well.
The continuously formed section in the middle of the plate is simulated in a very good
approximation. The position and height of peaks resulting from changes in the contact
state with the lateral rolls are also predicted very closely. At the plate ends, the radius of
curvature tends to infinity, since these have not been formed.
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Figure 7. Investigation of the prediction capability of the ANN for variation of (a) the side roll angle
and (b) the plate thickness.

Figure 7b shows exemplary results for two parameter configurations with different
plate thicknesses of 70 mm and 80 mm, respectively. This plate was also made of the
material S350, whereby the length was 5250 mm and the width was 1400 mm. The feed
angle of the side roll was 41.84◦. Again, it can be seen that the ANN is able to reproduce the
results of the FE simulation in a very good approximation. Overall, the ANN recognizes
the relation that with a constant feed angle of the side roll, thicker plates are formed
more strongly.

The accuracy of the monitoring system was also tested with FE simulations. For
this, the FE model from [11] was used to simulate the inlet-side bending of a plate made
of S350 material with the dimensions 2660 × 1400 × 30 mm. The feed angle of the side
roll was 30◦, 40◦ and 50◦, respectively. Thus, low, medium, and high degrees of forming
were investigated. To determine reference values, the plate curvature was alternatively
determined directly on the basis of the node positions. The results of the investigation are
shown in Table 2.

Table 2. Testing of the accuracy of the monitoring system on simulation data.

Side Roll
Feed Angle in Degree

Curvature of Radius in mm
Relative Error

Monitoring System Reference

30.0 2618.5 2672.5 2.0%
40.0 1089.0 1093.7 0.4%
50.0 912.1 929.5 1.9%

The results show that the monitoring system can be used to measure the forming
result with a very good accuracy, irrespective of the degree of forming.

4.2. Experimental Testing

A 4-roll bending machine of the type W12-60*4000 from the Chinese manufacturer
Nantong Shengli Heavy Machine Manufacturing was used for the experimental investiga-
tion. This machine was also modeled in the numerical investigation. For the experimental
study, a plate of S350 material with dimensions of 2660 × 1400 × 30 mm was formed. Since
the ANN was trained with data for outlet side bending, in the experiment the plate was
also formed with the outlet side. Therefore, the side roll was fed at an angle of 63.4◦.

The forming of the plate was measured using two different methods. On the one hand,
the developed monitoring system was used. The experimental setup for this is shown in
Figure 6 on the right. On the other hand, reference measurements were carried out with
a 3D laser scanner Focus 3D X 330 (Faro). With this scanner, a point cloud of the contour
of a plate section was obtained. To determine the radius of curvature, with the software
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GOM Inspect a cylinder was fitted through this point cloud and its radius of curvature
was measured.

Figure 8a shows the comparison of the ANN prediction with the measurement results.
Here, it should be noted that the ANN prediction gives the local curvature of the plate
over its entire length. In contrast, only a section of the plate could be measured with
the monitoring system due to the drag distance. With the 3D scanner, the measurable
plate section was even smaller. The diagram shows approximately the center of the
measured section for the 3D scanner. In Figure 8b, the prediction of the ANN is visualized
geometrically with the help of the developed geometric model and compared to the point
cloud of the 3D scan.
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According to the results shown, the ANN was able to predict the achieved plate
curvature in a very good approximation. The forming is only slightly overestimated, which
can, however, be advantageous in terms of a conservative process control. The deviation of
the prognosis is mainly because the ANN was trained on synthetic data from a FE study.
Since the model is a simplification of the reality, this method is subject to some inaccuracies.
In this respect, a large influence can be assumed due to the unknown stochastic fluctuations
of the plate and machine properties, which lead to deviations from the model assumptions.

For these reasons, it is likely that the accuracy of the predictions can be improved if
the ANN is trained on experimental data. Based on training data on plates of the same
batch, the influence of stochastic fluctuations of the plate properties can be estimated. To
enable the model to differentiate between different plates and plate batches, corresponding
ID numbers could be assigned and supplied to the model as additional input variables. To
what extent this can improve the model predictions still needs to be investigated.

The developed monitoring system was able to reproduce the measurement of the 3D
scan in a good approximation. Due to the unintended measurement of elastic deformation,
which occurs when bending with the outlet side, there was a slight overestimation of
the forming. However, because of the high degree of deformation, the extent of elastic
springback was small. The almost constant course of the measured curve underlines the
good reproducibility of the measurements of the monitoring system.

5. Conclusions

In this paper, a method for the roll bending of heavy plates was developed that can
be used to achieve a more objective process control and partial process automation. This
is done by upgrading the roll bending machine with an empirical AI-based prediction
model and a monitoring system. The model can support the plant operator in setting up
the machine by predicting the expected forming result. The monitoring system enables
an automated measurement of the forming behavior of a plate and is used to generate
process data for the training of the model. During the development, attention was paid to
low investment costs, easy installation, and flexible functionality. This makes the method
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particularly suitable for the upgrading of the manufacturing facilities of SMEs. With
numerical and experimental investigations, it was shown that the developed components
provide a good accuracy.

For a full automation of the process control, the prediction model must be extended
with control algorithms that can adjust the machine based on the model calculations. It is
planned to realize this in future work. Moreover, it is planned to further develop the model
to reduce the required amount of process data, which will further increase its practicability.
In addition, further development of the monitoring system is planned so that it can also
provide reliable measurement results during outlet side bending.
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