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Abstract: Data-driven formulations are currently developed to deal with the complexity of the multi-
physics governing the response of microelectromechanical systems (MEMS) to external stimuli and
can be extremely helpful. Such devices are in fact characterized by a hierarchy of length and timescales,
which are difficult to fully account for in a purely model-based approach. In this work, we specifically
refer to a (single-axis) Lorentz force micro-magnetometer designed for navigation purposes. Due
to an alternating current flowing in a slender mechanical part (beam) and featuring an ad hoc set
frequency, the microsystem is driven into resonance so that its sensitivity to the magnetic field is
improved. A reduced-order physical model was formerly developed for the aforementioned movable
part of the device; this model was then used to feed and speed up a multi-physics and multi-objective
topology optimization procedure, aiming to design a robust and performing magnetometer. The
stochastic effects, which are responsible for the scattering in the experimental data at the microscale,
were not accounted for in such a model-based approach. A recently proposed formulation is here
discussed and further extended to allow for such stochastic effects. The proposed multi-scale deep
learning approach features: at the material scale, a convolutional neural network adopted to learn the
scattering in the mechanical properties of polysilicon, induced by its morphology; and, at the device
scale, two feedforward neural networks, one adopted to upscale the mechanical properties, while the
other learns a microstructure-informed mapping between the geometric imperfections induced by
the microfabrication process and the effective response of the movable part of the magnetometer. The
data-driven models are linked through the physical model to provide a kind of hybrid solution to the
problem. Results relevant to different neural network architectures are here discussed, along with a
proposal to frame the approach as a multi-fidelity, uncertainty quantification procedure.

Keywords: data-driven model; multi-physics; microelectromechanical systems (MEMS); Lorentz
force micro-magnetometer; multi-scale; deep learning; neural network

1. Introduction

Most materials used in sophisticated technologies, such as in the case of MEMS, are
characterized by a hierarchical internal structure with features at several length scales [1].
These hierarchical structures completely determine their macroscale properties and perfor-
mance characteristics. Consequently, important efforts in the field of materials informatics
are put into developing novel data-driven approaches for mining high fidelity process–
structure–property (PSP) linkages from large collections of experimental, modeling, and
simulation datasets [2]. Advancements in machine learning and data science approaches,
have played a key role in accelerating microstructure quantification and feature extraction
tasks, based on several methods such as n-point spatial correlations (n-point statistics)
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for the microstructural quantification and principal component analysis (PCA) for feature
recognition [3–5]. Recently, deep learning approaches have facilitated the extraction of
higher-order feature information for the establishment of PSP links [6]. Moreover, spatial
statistics can be combined with deep learning-based extracted features to build unified
models, leading to improved accuracy in terms of properties prediction [7,8].

Building upon a formerly developed artificial neural network (NN)-based framework,
see [9–12], in this work, we propose an improved methodology in terms of the composition
of the datasets, and the optimization of the architectural hyperparameters and overall
training strategy. This data-driven protocol allows us to account for material related
uncertainties governing the performance of polycrystalline structures at the microscale [13]
while incorporating microfabrication-induced geometric uncertainties, to produce accurate
structure–property mappings for a (single-axis) Lorentz force micro-magnetometer [14,15].
The response of the device is characterized in terms of the maximum oscillation amplitude
of its polysilicon resonant structure.

The remainder of this work is organized as follows. Methodological details are
discussed in Section 2. Results are reported and analyzed in Section 3. Finally, concluding
remarks and insights for future research work are collected in Section 4.

2. Methodology
2.1. Data-Driven Multi-Scale Approach

Figure 1 provides a general description of the adopted model. Two approaches are
proposed to address the upscaling of the mechanical property of interest, in this case the
in-plane Young’s modulus E of the polysilicon film. A homogenization procedure carries
the information from the length scale of the squared h × h domains, representing stochastic
volume elements (SVEs) in Model 1, to the length scale of the resonant structure of the
device, i.e., the scale of the polysilicon beam of size L × h in Model 2. Dataset 1 defines the
set of values h, while Dataset 2 defines a set of values L × h where n = L/h must be defined
a priori and defines the size of the input layer of Model 2. Consequently, the combined
use of Model 1 and Model 2 establishes a data-driven homogenization framework for all
the possible beam geometries L × h for which L/h = n. In this work, Dataset 1 is composed
of elements described by the set h = {2 µm, 3 µm, 5 µm and 10 µm} and n = 20 has been
defined as the dimensionality of the input vector to Model 2. Moreover, only h = 2 µm has
been considered for assembling the elements of Dataset 2 so that all the L × h structures
correspond to samples featuring 40 µm × 2 µm.
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Figure 1. Overall model schematic, composed of three data-driven submodels to account for material-
and geometry-related uncertainties at different (termed material and device) length scales.

The homogenization framework can therefore be exploited to produce microstructure-
informed inference models for the polycrystalline structures, whose characteristic length
scale is compatible with the scale defined by Model 2. This solution can be the case for
typical structures of MEMS devices. An example of it is represented by Model 3, which
employs the output of Model 2, together with an additional variable (representing a mi-
crofabrication defect termed over-etch, O) as inputs to predict the maximum oscillation
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amplitude νmax of the resonant structure in a Lorentz force MEMS magnetometer, lever-
aging available analytical models in [14,15] to generate the ground truth data. O has been
modeled according to the statistical distribution reported in [16,17].

2.2. Implementation Details

To find the optimal model architecture, a search space strategy is adopted and the
KerasTuner hyperparameter optimization framework [18] is employed with Random Search
as the tuning algorithm. To explore the search space, a maximum number of 50 trials, with
one execution per trial, is established. Model 1 consists of a convolutional NN with the
following arrangement of layers: 2D.Conv (filters = {32,64,96,128}, kernel_size = {3,5}) +
Max.Pooling (pool_size = (2,2)) + 2D.Conv (filters = {32,64,96,128}, kernel_size = {3,5}) +
Max.Pooling (pool_size = (2,2)) + Flatten followed by a single neuron output layer, Dense
(units = 1). Adamax (learning rate = {0.01,0.001,0.0001}) has been selected as the optimizer.
Here, values specified within curly brackets represent the elements of the associated
search space.

Similarly, both Model 2 and Model 3 consist of feedforward NN, which feature an
arrangement of 3 hidden layers of the type Dense (units = {50, 100, 150}), followed by a
single neuron output layer Dense (units = 1). The same configuration for Adamax was used
again. Moreover, mean squared error (MSE) loss function, batch size equal to 10, and early
stopping with a patience equal to 50 were used in all the models.

2.3. Input Data Generation
2.3.1. Dataset 1

Stochastic volume elements were digitally generated via the regularized Voronoi tes-
sellation procedure described in [13] and formerly adopted in [9–12]. Associated target
values of the homogenized Young’s modulus ESVE were obtained via standard FE sim-
ulations. Exploiting the anisotropic elasticity of silicon [19], gray level values between 0
and 1 encoded the in-plane lattice orientation of the crystalline domains, measured with
respect to a global reference axis. These squared h × h domains were representative of
the texture of polysilicon thin films at the microscale. For the current work, a finite set of
characteristic values, namely h = {2 µm, 3 µm, 5 µm and 10 µm} was considered. Specifically,
the same dataset reported in [12] for the training of the material-level neural network was
adopted for the fitting and assessment of Model 1, only differing in the selection of a lower
image resolution of 64 × 64 pixels, rather than the original 128 × 128 pixels. A comparison
between these two resolutions is depicted in Figure 2.
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Figure 2. Pairs of images featuring original resolution (left) and reduced resolution (right), for all the
considered values of h.

To quantify the variation in information associated with the adopted resolution, the
Kullback–Leibler divergence was computed to measure the distance between the discrete
probability distributions of the pixel values for the images at larger and lower resolutions
represented, respectively, by P and Q. These distributions were obtained by normalizing the
histograms of the pixel values. Specifically, the reverse KL, i.e., KL(Q||P) was computed,
with Q regarded as an approximation of P. Results showed that even for the samples
displaying the largest KL(Q||P) distance, an acceptable match of the modes of P was
obtained by Q, thus validating the adopted image resolution adjustment.

2.3.2. Dataset 2

As introduced in Section 2.1, Model 2 was trained based on a dataset composed of N
samples of size L × h, where N = 1050, L = 40 µm, and h = 2 µm, so that n = 20. At variance
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with former works [9–12], where each slender beam was considered as a concatenation of a
single individual domain of size h × h, in the current work, a microstructure was digitally
generated for the entire geometry of the beam following the same procedure specified in
Section 2.3.1. Figure 3 illustrates one of the generated beam microstructures, displaying a
resolution of 64 × 1280 pixels.
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n) 64 × 64 pixels subdomains that are fed to the already trained Model 1 to generate
a vector of predictions that constitute the input of Model 2. Model 2 is trained to map
the vector of predictions Ei

j from Model 1 into the homogenized Young’s modulus Ei of
the entire beam structure. Additionally, following a format given by number of samples,
mean, and standard deviation of the target values, Dataset 2 was composed by: Training
set = 800, 149.5 GPa, 1.3 GPa, Validation set = 150, 149.6 GPa, 1.3 GPa, Test set = 100,
149.6 GPa, 1.4 GPa. An additional test set, namely, Test set 2 = 91, 145.0 GPa, 26.3 GPa,
consisted of 91 additional data points simulating beams of a hypothetically homogeneous
material (so that no real microstructures need to be generated), displaying values of Young’s
modulus in the range [100 GPa, 190 GPa]. This set was used to assess the generalization
capabilities of Model 2 outside the range of target values characterizing the polysilicon
beam microstructures, given by [144.9 GPa, 154.0 GPa].

2.3.3. Dataset 3

To generate the ground truth data, i.e., the maximum oscillation amplitude νmax of
the resonant structure, this work relies on the analytical model of the single-axis Lorentz
force MEMS magnetometer derived in [15], accounting for the weakly coupled thermo-
electro-magneto-mechanical multi-physics governing the vibrations of the slender clamped–
clamped resonant beam. The specific geometric parameters, i.e., the length, width, and
thickness of the beams, were, respectively, given by 40 µm, 2 µm, and 5 µm and were
considered in the analytical model to assemble Dataset 3, featuring: Training set = 800,
1.67 nm, 0.032 nm, Validation set = 100, 1.67 nm, 0.029 nm, Test set = 100, 1.67 nm, 0.032 nm.

3. Results
3.1. Homogenization of the Stochastic Volume Elements (SVE)

Within the tested configurations from the search space, the best performing model was
obtained for the combination of hyperparameters given by {128, 5, 128, 3, 0.0001}. With this
configuration, Model 1 consisted of a total of 176,001 parameters. A very good performance
was obtained for the homogenization at the SVE scale, improving the results reported
in [12]. The obtained MSE values correspond to 0.2037 GPa2, 0.0907 GPa2, 0.0874 GPa2,
1.4589 GPa2, and 0.1802 GPa2 for the Training set (h = 2, 10 µm), Validation set (h = 2,
10 µm), Test set 1 (h = 2, 10 µm), Test set 2 (h = 3 µm), and Test set 3 (h = 5 µm), respectively.

3.2. Homogenization of the Resonant Structure

The best performing model was obtained for the combination of hyperparameters
given by {50, 50, 50, 0.001}, resulting in an architecture with a total of 6201 fitting parameters
for Model 2. Figure 4 illustrates the good agreement between the predicted and ground
truth data obtained by Model 2 on the test sets. The equation for the linear least squares
(LLS) fitting of the predictions is reported in the parity plots, as well as the associated
coefficient of determination R2.
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The absolute percentage error associated to the mean and standard deviation com-
puted from the set of predictions, corresponds to 0.0% and 7.7% for the Training set, 0.1%
and 0.0% for the Validation set, 0.0% and 0.0% for the Test set, and 0.28% and 0.0% for Test
set 2. Moreover, the MSE values associated are 0.0222 GPa2, 0.0149 GPa2, 0.0163 GPa2, and
0.1755 GPa2, respectively. These results confirm that Model 2 is able to generate predic-
tions consistent with an effective homogenization scheme, reproducing the trivial expected
output for the simulated beams featuring hypothetical homogeneous materials.

3.3. Maximum Oscillation Amplitude of the Lorentz Force MEMS Magnetometer

The best performing model was obtained for the combination given by {50, 150, 50,
0.01}. With these hyperparameters, Model 3 consists of a total of 15,401 fitting parameters.
Figure 5 summarizes the performance of Model 3 on the test set, which can produce
exact one-to-one predictions. In this case, the MSE values associated to each of the sets
correspond to 2.099 × 10−8 nm2, 2.065 × 10−8 nm2, and 1.966 × 10−8 nm2 for the Training,
Validation, and Test sets, respectively.
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4. Conclusions

A data-driven modelling scheme was implemented and allowed the effective upscal-
ing of the properties across the identified hierarchy of length scales in MEMS devices,
accounting for the microstructure of complex textured structural films (e.g., made of poly-
crystalline materials). The proposed protocol can be readily exploited to model the response
of intricate systems, such as MEMS devices, by incorporating additional relevant variables
as inputs of a device-level model, able to learn complex structure–property mappings in a
microstructure-informed data-driven manner.

Future research activities will focus on adapting the proposed homogenization frame-
work to become more general and therefore less constrained by the specific device geometry.
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