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Abstract: In this work, we present a compact micro-opto-fluidic sensing platform for the measurement
of volumetric refractive index (RI) variations of ultra-low volumes of fluids with respect to a reference
liquid. In the instrumental configuration, we employed a disposable plastic micro-channel, which
was customized with integrated back and front aluminum reflectors, deposited by sputtering. The
presence of the double metallization is exploited to create a zigzag guiding path for the radiation
provided by a semiconductor laser diode, so that light crosses the fluid under test multiple times
before reaching a 1-D Position Sensitive Detector (PSD). According to Snell law, when fluids with
different RI indices fill the channel, the radiation is deflected at different angles and the output
beam shifts along the channel surface. RI variations are monitored by measuring the position of the
output light spot on the surface of the PSD. To validate the results, a theoretical model based on ray
optics was developed to study the propagation of the radiation travelling through the fluidic channel.
Experimental results showed a beam displacement per RI unit up to 3234 µm/RIU, in agreement
with the prediction of the analytical model. The proposed sensing method is label-free, contactless,
non-invasive, and biologically safe. Moreover, the micro-opto-fluidic sensing platform could be
exploited in a wide range of applications, ranging from biology to medicine to the agri-food industry.

Keywords: disposable device; laser beam shift; micro-opto-fluidics; refractive index

1. Introduction

Sensors based on refractive index (RI) detection exploit the fact that many physical
quantities, such as concentration and temperature, determine a change in the sample RI as a
consequence. Therefore, RI measurements can be exploited in a wide range of applications
such as in disease diagnosis [1,2], chemical and biological sensing [3,4], and the food and
beverage industry [5–7].

The main requirement of the new-generation devices for the analysis of fluids is the
possibility to perform a contactless and non-invasive measurement. This requirement can
be satisfied by optical sensors, that present several advantages in terms of size, cost of
fabrication, robustness, and sensitivity.

There are different optical methods for measuring the RI of liquids. For example, fiber-
optics sensors are widely used, but they must be placed in contact with the fluid under
test; thus, they are not suitable for contactless sensing. RI changes can also be detected
by exploiting Surface Plasmon Resonance (SPR) sensors, although such systems require
expensive components and complex fabrication and preparation.

Consequently, nowadays, there is still an urgent need to develop low-cost sensing
platforms based on innovative optical techniques to analyze fluids in a totally non-invasive
way. Towards this aim, several authors proposed techniques based on the change of
direction of a refracted laser beam [8–11]. Basically, when a laser beam impinges obliquely
on a rectangular cell filled with liquid and passes through the cell, the propagation axis
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of the transmitted beam is shifted from that of the incident beam. By measuring the
displacement, it is possible to determine the refractive index of the liquid [11].

In this work, we present a compact micro-opto-fluidic sensing platform for the mea-
surement of volumetric RI variations of ultra-low volumes of fluids based on a similar
detection method. We used a disposable plastic microslide, which was customized with
integrated back and front aluminum reflectors so that the radiation provided by a semi-
conductor laser diode can be zigzag-guided into the channel, crossing the fluid under
test multiple times before reaching the active surface of a 1-D Position Sensitive Detector
(PSD). RI variations are monitored by measuring the position of the output light spot on
the surface of the PSD. The working principle of the sensor was demonstrated by testing
glucose–water solutions. To validate the results, a theoretical model based on ray optics was
developed to study the propagation of the radiation travelling through the fluidic channel.

2. Materials and Methods
2.1. Optoelectronic Instrumental Configuration

The instrumental configuration for the contactless sensing of fluids is shown in Figure 1.
The red radiation provided by a semiconductor laser diode (DL3147-060, Sanyo, Japan)
is shone on a disposable plastic micro-channel at an angle of approximately 45◦ and it is
focused using a lens (LTN330B, Thorlabs, NJ, USA) to obtain the smallest light spot onto
the active surface of a 1-D Silicon Position Sensitive Detector. The PSD (1L10SU74-SPC02,
by SiTek Electro Optics AB, Partille, Sweden) is powered with a ±15 V voltage supply
and provides two output voltage signals: the difference signal V1 − V2 and the sum
signal V1 + V2. The V1 and V2 are proportional to the currents that are photogenerated
at the extremities of the sensitive region that has length LPSD = 10 mm. The light spot
position pPSD on the PSD, with respect to the center of the sensitive area, can be retrieved
by computing the formula:

pPSD = (LPSD/2)·(V1 − V2)/(V1 + V2) (1)
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The output signals supplied by the PSD are visualized in real time and acquired with
an oscilloscope. Data are further processed in a MATLAB environment.

The micro-fluidic device investigated in this work is a polymer channel microslide
(IBIDI µ -Slide I0.8 LUER by IBIDI GmbH, Gräfelfing, Germany) with a nominal channel
depth of 800 µm and connection tubings that allow the easy injection and ejection of the
fluids by means of a syringe. It is realized in a bio-compatible material and allows the
contactless remote analysis of ultra-low volumes of a sample. The bottom layer of the
microslide is coated for its entire length with a 50-nm-thick aluminum (Al) layer, while the
top layer presents a 5-mm-long Al layer (Lmet = 5 mm). These metallizations, deposited by
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sputtering, act as mirrors, inducing zigzag light propagation through the structure. In this
way, incident light crosses the fluid multiple times, thus increasing the sensitivity of the
measurement.

2.2. Theoretical Model

A theoretical model based on ray optics was developed in a MATLAB environment to
study the light propagation through the microslide to obtain analytical results that could be
compared with the results of the experiments. The model predicts the displacement of the
output beam position onto the surface of the PSD when the channel is filled with samples
with different RIs. It was developed by considering the microslide as a multi-layer structure
composed of three layers with finite thicknesses (nominal value of the front polymer layer
thickness tf = 180 µm, nominal value of the channel thickness d = 800 µm, and back polymer
layer thickness tb ≈ 1 mm), immersed in air (the RI of air is taken equal to 1). No tolerance is
reported by the manufacturer for the channel depth and wall thickness, but it is reasonable
to suppose that the microslide’s actual dimensions could slightly differ from the nominal
ones. Hence, for the microfluidic device, a deviation of ±10% on the parameter d was
considered and the theoretical study was carried out for d = 720, 800, and 880 µm. The
refractive index of the polymeric layers was considered equal to 1.52 RIU, as reported
on the device datasheet. When light crosses the separation surface between media with
different RIs, it is partially reflected and partially transmitted according to Snell’s law. The
total pathlength inside the microslide can be calculated by recursively applying Snell’s
formula. The geometrical distance p between the entrance and exit positions of the light
beam in the microslide depends on the RI of the sample tested.

When fluids with different RIs are tested, the light beam always exits the channel with
the same output angle (that is equal to the incidence angle), but its exit position along the
fluidic device surface does change. For increasing values of the RI, it is moved closer to the
incident input beam and the value of p decreases, as shown in Figure 2, where a schematic
representation of light traveling inside the channel in case of a number of bounces equal to
N = 2 is reported. If the orange, purple, and green lines correspond to the paths of light
when the channel is filled with a sample with an RI equal to n1, n2, and n3, respectively,
and n3 > n2 > n1, then p3 < p2 < p1. The number of bounces N depends on the length of the
front metallization Lmet and it is given by:

N = CEIL(Lmet/p) (2)

where CEIL is the MATLAB function that returns the smallest integer value that is larger
than or equal to Lmet/p. The model can also be used to predict the exact length of the front
metallization, after the number of bounces has been chosen, simply inverting Equation (2).
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The theoretical displacement Xth of the light beam exiting the capillary was obtained
by computing the difference between p obtained with a sample fluid (psample) and water
(pwater), that was taken as a reference fluid:

Xth = |psample − pwater| (3)

3. Results and Discussion

Experimental measurements were carried out in the so-called “multiple bounce con-
figuration”. Thanks to the presence of the double metallization, the displacement of the
output beam can be strongly enhanced. The number of bounces N was estimated to be
equal to 3 using Equation (2). For the experimental characterization, the channel was filled
with distilled water and mixtures of glucose in water in concentrations equal to 0%, 5%,
10%, 16.5%, 20%, 25%, and 33%, corresponding to RI values n = 1.3314, 1.3386, 1.3459,
1.3553, 1.3604, 1.3676, and 1.3792 RIU, respectively. Figure 3 shows the experimental varia-
tion of the beam position pPSD detected by the PSD as a function of time when water and
water–glucose solutions with different concentrations are tested. The system was aligned
so that the reflected beam in the presence of water into the channel reaches approximately
the center of the active area of the PSD (i.e., pPSD equal to zero). When the RI of the liquid
inserted into the channel increases, the absolute value of the displacement increases as well,
with respect to the value of the signal acquired in the presence of water.
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By linearly fitting the theoretical and experimental displacement X as a function of
the liquid RI, it was possible to obtain both theoretical (red trace) and experimental (black
trace) calibration curves (Figure 4), that were found to be in extremely good agreement.
The theoretical displacement Xth is given by Equation (3), whereas the experimental
displacement Xesperim of the light beam position with respect to that measured when
water (chosen as a reference fluid) flows into the channel was recovered as follows:

Xexperim = |pPSD_FLUID − pPSD_WATER| (4)

where pPSD_FLUID and pPSD_WATER are the positions of the light spot on the PSD obtained
when the fluid sample and water flow into the channel, respectively. The largest displace-
ment X of the laser spot was obtained for the sample with the highest RI. We reported the
theoretical calibration curve that is in best agreement with the experimental one, obtained
by considering d = 880 µm. The sensitivity depends on d and on the number of bounces
N: the higher the number of bounces N and channel depth d, the longer the distance p.
Exploiting the zigzag-guided effect due to the presence of the double metallization of the
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microslide, it was possible to obtain an experimental beam displacement per RI unit up to
3234 µm/RIU.
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4. Conclusions

In this work, we proved the functionality of an optical method to distinguish fluids
based on their RI in a non-invasive and contactless way. When the RI changes, the output
beam position shifts along the channel surface: the operating principle of the sensors is
based on the measurement of the light spot displacement onto the active surface of a PSD
with respect to a reference fluid. The working principle and the potentiality of the micro-
fluidic platform were demonstrated by filling the channel with distilled water and mixtures
of glucose in water in concentrations up to 33%. The experimental results were found
to be in very good agreement with the prediction of the analytical model. The multiple
bounce configuration (with N = 3 estimated by the model) has allowed to achieve a beam
displacement per RI unit up to 3234 µm/RIU. The deposition of Al thin layers is a simple
and low-cost technology that allows the fabrication of a smart device with high sensitivity,
suitable for several biomedical and chemical applications.
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