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Abstract: The analysis and prediction of go-arounds, also referred to as missed approaches, is an
active field of research due to the go-around’s impact on safety and the disruption of the traffic flow
at airports. The advent of open-source aircraft trajectories available to researchers has increased the
level of interest in the field. This paper introduces a publicly available dataset containing metadata
of almost 9 million landings and 33,000 go-arounds. The dataset is based on observations from
the OpenSky Network and includes data from 176 airports in 44 countries observed in the year
2019. After downloading the data, a go-around classification was performed and the quality was
assessed. The usefulness of the dataset is illustrated with two novel example applications. The first
example shows how the go-around rate for a runway can be modeled by using a quasi-binomial
generalized linear model, while the second example compares the go-around rates for a number of
airport-airline pairs. The introduced dataset is significantly larger than the data used so far in the
analysis of go-arounds and provides the opportunity to develop novel use cases. This dataset frees
researchers from having to collect and process large amounts of data and instead lets them focus on
the analysis. The authors are convinced that this large dataset will stoke the creativity of the research
community and facilitate interesting and novel applications.
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1. Introduction

Go-arounds (GAs), also referred to as missed approaches, are standard flight proce-
dures in which an aircraft interrupts its approach, climbs away, repositions, and then makes
another approach to land. GAs are either initiated by pilots or air traffic controllers if a
safe landing cannot be continued. Causes for GAs are numerous; they are either due to
intrinsic reasons (e.g., unstable approaches [1,2], approaches flown “too fast, too low, and
too close” [3,4]), extrinsic reasons (e.g., runway occupied by preceding arrival or departure,
airport surface operations, etc. [5]), or meteorological reasons (e.g., limited visibility, strong
crosswinds and tailwinds, etc. [6,7]). The scientific literature on GAs can be divided into
four parts, which deal with (i) the detection of GA events based on aircraft trajectory data,
(if) the prediction of GAs, (iii) the study and optimization of air traffic management issues
in case of GAs, and (iv) the investigation of safety-related aspects in case of GAs.

Historically, studies dealing with the detection of GAs were heavily reliant on the
availability of trajectory data gathered by radar systems operated by air navigation service
providers. For this reason, access to such data was limited. The advent of open-source au-
tomatic dependent surveillance-broadcast (ADS-B) and mode-S data, for instance, sourced
through the OpenSky Network [8], has increased the interest of the scientific community in
the subject. Based on the trajectory data of landing aircraft, GAs are usually detected and
labeled with the help of rule-based algorithms [5-7,9-11]. For this purpose, trajectories are
analyzed with a predefined set of rules, which, for instance, check whether an increase in
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altitude or a change in heading above a threshold value occurred during the approach, or
whether an aircraft left a pre-determined approach corridor.

Prediction methods usually estimate the probability of a GA occurring. In this context,
both microscopic and macroscopic prediction approaches are mentioned in the literature.
Microscopic methods allow the estimation of the probability of a GA at the level of in-
dividual flights. To this end, the microscopic models presented in the literature use a
variety of inputs, such as the estimated energy level and localization performance of the
approaching aircraft, the in-trail relationship of the approaching aircraft to other traffic
currently being in the approach, information regarding the current state of the runway,
data describing the prevailing weather conditions, etc. For an analysis of causal factors
for GAs, conducted for the example of New York JFK airport, the reader is referred to
Dai et al. [12]. Regarding microscopic GA prediction models, Figuet et al. [9] applied a
number of machine learning methods to predict the probability of a GA at Zurich Airport
with open-source data from OpenSky Network. In Dhief et al. [13], the authors intro-
duced a microscopic GA-prediction model based on the CatBoost and XGBoost algorithms
for the airports of Philadelphia and Van Nuys with impressive accuracy. Besides that,
Dai et al. [14] presented a microscopic model based on an input—output hidden Markov model
that enables the prediction of GAs for flights approaching New York’s JFK airport, while Pu-
ranik et al. [15] (p. 16) proposed a supervised machine learning model based on a random for-
est model, which can be used to make a “well-informed, safe go-around or landing decision”.
Macroscopic models, on the other hand, enable the determination of the probability of GAs
aggregated to the aerodrome level. In this regard, Gariel et al. [5] compared the statistical
properties of nominal landings and GAs in order to determine the factors that contribute to
the GA rate of an airport the most. In Figuet et al. [9], the authors suggested a generalized
additive model to predict the GA rate at Zurich Airport within the next hour by considering
weather-related factors, traffic density information, aircraft and airline mix, etc. Moreover,
Chou et al. [16] investigated which supervised machine learning model can best estimate
the GA rate for Denver Airport if the models are provided with information regarding the
prevailing weather conditions, observed traffic density, and attributes of aircraft using the
airport. By comparing 18 different machine learning models, the authors concluded that
the best results can be achieved with the CatBoost algorithm.

Regarding the study and optimization of air traffic management issues in the case
of GA events, the literature considers and evaluates, for instance, the additional fuel
consumption and emissions in case of missed approaches [17], or the optimization of
runway capacity by optimally re-injecting aircraft performing a GA into the approach
flow [18,19].

In terms of the investigation of safety-related aspects, Campbell et al. [4,20] deter-
mined a set of operationally relevant criteria for the initiation of GAs that enables flight
crews to perform missed approaches as safely as possible. Moreover, Ross and Tomko [21]
examined incident reports from the Aviation Safety Reporting System in terms of hu-
man factor-related contributions to unstabilized approaches. In this context, the results
somewhat counter-intuitively suggest that unstable approaches often end in landings and
not in GAs. In de Voogt et al. [22], the authors compared accident reports in order to
determine how the training of flight crews and advances in technology affect the accident
rate in general and the rate of accidents caused by GAs in particular. While technical
and procedural improvements have positively influenced the accident rate in general, this
causality could not be established for accidents caused by GAs. Finally, Krauth et al. [23]
presented a method based on multivariate density models, which can be used to artificially
generate trajectories of aircraft flying GAs at Zurich airport. Among other applications,
such artificially generated trajectories can be used for risk assessments with collision risk
models, which are often based on Monte Carlo simulations.

The literature studies on GAs are diverse and growing in volume. However, based
on the literature presented above, we observe that research on the analysis and modeling
of GAs has, so far, focused on individual airports, and/or the studies are often based on
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relatively limited amounts of data (in terms of the number of GAs considered). It is further
noticeable that researchers had to devote time and effort to identify GA events in the first
step, even if the main focus of the study was on a different topic. This paper attempts to
mitigate these limitations of previous studies by publishing a dataset of events containing
both landings and GAs at much larger scales. Subsequently, the dataset not only provides
researchers with accessible sources of data, it also relieves them from having to classify
landings themselves and lets them focus on the topic of their work.

The remainder of this paper is structured as follows: Section 2 describes the dataset
and how it was developed, while Section 3 provides two novel example applications for
this dataset. Finally, Section 4 contains conclusions and an outlook on possible future work.

2. Dataset
2.1. Description

This paper introduces a dataset containing the metadata of landing aircraft for 176
(mostly) large airports located in 44 countries. Since some airports have multiple runways,
this resulted in 758 airport-runway pairs. In total, almost 9 million landings (including
more than 33,000 GAs) that have occurred in the year 2019 are included in this dataset.
Figure 1 shows the proportion of collected landings for different continents, countries,
and airports.

W
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Figure 1. Proportion of the observed landings per region, country, and airport.

As can be seen from the figure, the dataset is heavily biased toward airports located in
North America and Europe, with significantly fewer landings in the other regions. This
imbalance is mainly due to the better coverage of the OpenSky Network in these regions.

Each landing is represented by one row in the dataset and contains the respective
metadata, including if a GA was performed. The columns of the dataset are shown in
Table 1.
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Table 1. Columns in the dataset.

Column Name Type Description
UTC time of landing or first GA (in the format YYYY-MM-DD).
time date time  Specifically, it is the timestamp when the flight was last aligned

on the runway on its first landing attempt.

Unique 24-bit (hexadecimal number) ICAO identifier of the

icao24 string aircraft concerned.
callsign string Aircraft identifier in air-ground communications.
airport string ICAO airport code where the aircraft is landing.

. Designation of the runway on which the aircraft performed its
runway string . .

first landing attempt.

has_ga string “True” if at least one GA was performed, otherwise “False”.
n_approaches integer Number of approaches identified for this flight.

n_rwy_approached integer Number of unique runways approached by this flight.

A sample from the dataset consisting of three landings is shown in Table 2.

Table 2. Landing dataset content example.

Time icao24 Callsign Airport Runway has_ga n_approached n_rwy_approached
2019-10-12 05:21:20 48455a  KLMS8S8] EHAM 18C False 1 1
2019-06-30 20:53:14 4000937 BAW957L EGGL  27L True 2 1
2019-10-03 14:38:45 070ed4  6VONE GOBD 01 True 6 2

This sample illustrates three different patterns typically found in the data. The first
row with the call sign KLMS8§] is a simple landing with no GA, while the other two rows
are landings with GAs. The second row, with the call sign BAW957L, is a flight where
the aircraft performed one GA and landed on the same runway as the one originally
approached. Finally, the third row, a flight with the call sign GODB, appears to be more
exotic. Apparently, this flight performed a total of six approaches and approached two
different runways. The data about the number of approaches and the number of approached
runways are helpful to exclude calibration and training flights.

2.2. Dataset Processing

By using the historical database of OpenSky Network [8], all landings for the year 2019
were downloaded for each airport in the dataset. Specifically, the state_vectors_data4 was
downloaded for trajectories where the destination airport in flights_data4 is to be included
in the dataset. For each airport, the runway approached by each landing attempt was
identified using the python Traffic library [24]. To identify which runway was used, the
traffic library relies on an airport database, containing the location and bearing of each
runway, and retrieves the portions of the flight that are aligned with a runway. Additionally,
each trajectory was analyzed individually and classified as a GA or not a GA. To detect
if a landing involved a GA, the algorithm implemented in [24] was slightly modified to
increase robustness. The algorithm does the following:

1. Assigns each portion of the trajectory to a flight phase by using the machine learning
based algorithms introduced by Sun et al. [25].

2. Identifies the portion of the trajectory that is aligned with a runway of the airport.

3. Classifies the trajectory as having a GA if two distinct portions that are aligned with a
runway are separated by one climb phase.
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2.3. Dataset Quality

In order to assess the quality of the dataset, a manual inspection of each airport—
runway pair was conducted. For each airport-runway pair, 8 batches of 500 randomly
selected trajectories (or as many as available, if fewer than 4000 trajectories were observed)
classified as not having a GA were plotted. From this sample, the number of false positive
GA was estimated for the given airport-runway pair. Similarly, up to 8 batches of 10 random
landings classified as GA were plotted to estimate the number of false positive GAs.
Additionally, the rate of misclassified runways, i.e., assigning the wrong runway to a
landing, was estimated from the sample. As a consequence, 54 airport-runway pairs were
manually dropped from the dataset because the data quality was deemed to be insufficient.
Note that flights for which no ICAO-type code could be assigned were dropped from the
quality assessment to avoid cluttering.

Overall, the quality of the classification of the runways and the GA is satisfying. The
manual screening of the data showed that the quality of the classification into GA /not
GA and the assignment of the runway, unsurprisingly, are strongly dependent both on
the quality of the trajectories and the coverage. Airports with no parallel runways rarely
have issues with wrongly assigned runways. However, for airports with parallel runways,
the quality can vary. Note that the GA detection seems to be biased and yields more false
negatives than false positives. In other words, the quality check suggests that the GA rate
is generally underestimated. The GA detection algorithm sometimes fails to detect GAs
either (i) if GAs are initialized early on the approach and have no or only a short climb
phase, (ii) if GAs have a very tight turn radius and only a short leg on the final approach
(as usually performed by small general aviation aircraft), or (iii) if GAs directly divert to
other airports.

The estimated false positive and false negative rates for each airport-runway pair
are available with the dataset. This allows the users of the dataset to check the estimated
quality of a given airport-runway pair. The repository also contains all the plots that were
used for the quality assessment.

2.4. Dataset Availability

The dataset described in this paper is available at Monstein et al. [26]. In addition to
the minimal dataset described in Tables 1 and 2, an augmented dataset providing additional
information is published. This dataset contains, amongst others, the aircraft registration
and type code, region and country of the airport and the operator, instrument landing
system (ILS) glide slope angle, if the approached runway is intersected by another runway,
and meteorological information (METAR). The interested reader is referred to the full
description of the augmented dataset published in [26].

Users with access to OpenSky Network’s historical database can use the metadata
provided in the dataset to download the complete trajectories. An example of how this
could be done can be found in the repository of the dataset.

3. Example Applications

In this section, two example applications, which illustrate how the GA dataset intro-
duced in this paper could be used, are presented. The aim of these example applications is
to demonstrate the benefits of the dataset. To this end, Section 3.1, gives a brief overview of
how the GA rate (or probability of GA) for an airport-runway pair can be predicted, while
Section 3.2 focuses on the comparison of GA rates between different airports and operators.
Since the presented examples are only brief, the interested reader is referred to the relevant
literature for more details.

3.1. GA Probability Prediction for Airport—Runway Pairs

The dataset presented in this paper was born out of a project the authors were working
on. The problem at the time was to estimate the GA rate at an airport with a non-standard
ILS glide slope angle for which insufficient observations were available. The solution to that
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problem was to develop a regression model to predict the GA rate based on observations
in other places.

Before the regression model could be developed, the GA rate needed to be computed
from the data described in Section 2. To that end, the observations were aggregated
by airport-runway pairs and the total number of landings and GAs were computed.
The airport-runway pairs with less than 500 observed landings or no observed GAs
were excluded from the model. At some airports, small general aviation aircraft perform
numerous GAs for training purposes. To exclude these flights from the analysis, all
trajectories (other than from the turbojet and turboprop fixed-wing aircraft) were removed.
Additional features for the regression model, such as the runway length and the ILS glide
slope angle, were added to the aggregated data. The resulting dataset, which consists of
426 observations, contains the features shown in Table 3.

Table 3. Features used in the regression model to predict the probability of a GA of an airport-runway

pair.
Feature Type Description
. . . True if the runway has another runway intersecting it, other-
has_intersection categorical .
wise false.
rwy_length continuous  Length of the runway in kilometers.

glide_slope_angle continuous Angle of the ILS glide slope in degrees.

Geographical region of the airport (either Europe, North Amer-

airport_region categorical . ; . . .
port_reg 8 ica, South America, Asia, Africa, or Oceania).

The authors were interested in predicting the GA rate for an airport-runway pair. The
GA rate is usually expressed as the number of GAs per 1000 landings. This GA rate is equal
to the probability of a GA p multiplied by 1000, i.e., GA rate = p - 1000. The regression
model used for this application is the quasi-binomial generalized linear model (GLM),
which relates the features in Table 3 with probability p. The quasi-binomial GLM does not
model the probability directly. Instead, the prediction of the model is the log odd of p, which
is also known as the logit transform of p (e.g., see [27]). Such a GLM can be expressed as

108<1fp> = Po+ Prx1 + Poxa + .. 4 BrXx M

with Bo, B1, - - ., Bx being the model coefficients to be estimated, and x1, xy, . . ., xx being the
features, i.e., covariates, of the model.

The GLM with the features described in Table 3 was fitted to the aggregated data. The
results of the fitted model are summarised in Table 4 and illustrated in Figure 2. Note that
the baseline refers to an airport with no intersecting runway which is located in Europe.

Table 4. Estimated model coefficients obtained from the quasi-binomial GLM.

Coefficient Estimate Std. Error p-Value
intercept —6.6 0.40 0
has_intersection = True 0.11 0.054 0.033
rwy_length —0.086 0.044 0.055
glide_slope_angle 0.39 0.11 0.0003
airport_region = North America 0.097 0.055 0.078
airport_region = South America 0.68 0.12 0
airport_region = Asia —0.34 0.090 0.0001
airport_region = Oceania —-04 0.12 0.0007

airport_region = Africa —0.56 0.65 0.39
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Figure 2. Illustration of the model coefficients and its confidence intervals obtained from the quasi-
binomial GLM.

This simple GLM provides some interesting insights into the drivers of the GA rates
at different airport-runway pairs. For example, the model identified significant differences
between most of the geographical regions and the baseline in Europe. It also offers an
answer to the original question of how the ILS glide slope angle affects the GA rate. The
coefficient for the glide_slope_angle in Table 4 appears to be significant (small p-value) and
positive, implying that an increase in the glide slope angle increases the probability of a
GA. This effect is best illustrated by an example. Assume an airport-runway pair has a GA
rate of 3 per 1000 landings (p; = 0.003). Following Equation (1), the log odds of a GA is

0.003

If the glide slope angle was increased by one degree, all else being equal, the new log
odds would be 12 = 11 4+ 0.39 = —5.42. Subsequently, the resulting probability p, can be
calculated by computing the inverse log odds of 7,

e’
 14en

P2 = 0.0044. 3)
The model predicts that the probability, and GA rate, will increase by p2/p1 = 47% if the
glide slope angle was increased by one degree.

This simple model illustrates the power of the proposed dataset since it allows model-
ing across multiple airports and runways. It is reasonable to assume that important effects
are missing from this simple model. Nevertheless, it shows the benefits of the dataset for
researchers interested in exploring the differences between airports.

3.2. Comparing GA Rates between Operators

For the second example application, the GA rates between operators, i.e., airlines, are
compared. In the first step, the GA rates at the top five US American airports, measured
by the number of landings in the dataset, were computed. Subsequently, for each of these
airports, the corresponding top three operators at these airports were determined. The GA
rates of the resulting airport-airline pairs are shown in Figure 3. The black bars indicate
the Wilson score confidence intervals of the estimate of the GA rate with a confidence level
of 95% ([28]).
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Figure 3. GA rates, per 1000 landings, of the top three operators at selected US airports.

The results in Figure 3 show interesting differences between operators. For example,
at John F. Kennedy International Airport (KJFK) in New York, the three operators with
the most observations are American Airlines (AAL), JetBlue Airways (JBU), and Delta Air
Lines (DAL). Each of these operators is a local hub carrier and, in effect, each has its own
terminal. While AAL and DAL have a similar GA rate, JBU has a significantly lower rate.
It might be interesting for the relevant stakeholders, such as operators, the airport, and the
air navigation service provider, to notice and analyze the differences in GA rates. From
a safety perspective, it might indicate that some operators are taking more risks and are
performing fewer GAs than might be appropriate. From an economic perspective, it might
indicate that some operators are performing more GAs for operational reasons. If there are
ways to mitigate these reasons, the GA rate could possibly be reduced, which would have
positive effects on the costs, delays, and interruptions of the traffic flow.

Comparing operators over different airports can also be interesting. For example, it
seems that AAL has a higher GA rate than the baseline in most of the airports shown in
Figure 3. Such insight could help operators optimize operations. Moreover, the presented
dataset is attractive for airports. For example, the GA rate at the Dallas Fort Worth Interna-
tional Airport (KDFW) shows, compared to other airports, a larger variation between the
different operators. Understanding the reasons for this variation might help to develop
mitigation measures to both reduce the GA rate and increase the level of safety.

4. Conclusions

The proposed dataset, with its metadata of more than 33,000 GAs and almost 9 million
landings, is freely available and significantly larger than any dataset mentioned in the
literature so far. Since the detection of GAs has already been performed, researchers can
directly focus on the analysis of the data, instead of spending time on large-scale data
processing.

While the quality of the GA detection is sufficient, it could still be improved. This
is the case, in particular, for GAs initiated early on in the approach, GAs with a small
radius, and GAs diverting to other airports. A more robust detection algorithm might
remove the bias in the data, i.e, the underestimation of the GA rate. Nevertheless, the
GA detection is adequate for numerous applications and the user of the dataset is free to
remove observations based on the estimated false positive and false negative rates provided
with the data.

The two example applications illustrated the benefits of the dataset. The first example,
modeling the GA rate of a runway, can be useful to predict the GA rate for runways where
insufficient observations are available. The second example, the comparison of operators
at different airports, showed the variation of the GA rates, both between operators and
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airports. These kinds of analyses are novel and could not have been performed with the
previously available datasets.

We believe that our dataset can be of great use to other researchers working on the
topic of GAs. This might be in the form of allowing more robust, airport-independent
models, or by studying GAs across different airports. Moreover, we are convinced that,
given the creativity of the research community, new and interesting applications for this
dataset will be found.
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