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Abstract: One of the main sources of global warming is greenhouse gasses; the most important of
which is carbon dioxide. Reducing CO2 emissions, and its utilization or storage, is a global challenge
to tackle climate change. In this work, the operating conditions of the pilot CO2 capture unit are
studied using the ASPEN PLUS® software. This study describes the methodology of the simulations
and the main results. The unit consists of one scrubber and one stripper. For carbon dioxide
absorption from gas streams, the aqueous solvent K2CO3 is used. The effect on the absorption of CO2,
and regeneration of carbon dioxide and potassium carbonate were studied by varying parameters of
pressure, temperature, and concentration of solvent. For each parameter, three values were evaluated
with the following ranges: pressure 0.3–1 bar; temperature 80–100 ◦C; and concentration of potassium
carbonate 15–25 wt%. The optimum operating conditions of the pilot unit are pressure of 0.3 bar,
stripper temperature of 100 ◦C, and solvent concentration of 15 wt%. Under these conditions, 99.91%
CO2 capture and 85.46% CO2 regeneration were achieved. The present research aims to find the
optimal operating parameters of the pilot plant to validate the model with the experimental data. In
this way, the model parameterization can be used to design large-scale CO2 capture units.
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1. Introduction

The combustion of fossil fuels produces a large amount- of carbon dioxide, one of
the main greenhouse gases, which impacts global warming. Tackling climate change
requires reducing CO2 emissions either through the use of alternative fuels or through
the use of carbon capture technologies [1–3]. One of the most well-known CO2 capture
technologies is chemical absorption in an amine-based solvent (mono-ethanolamine (MEA),
methyldiethanolamine (MDEA), etc.) followed by desorption. Amines are widely used,
mainly because of their reactivity with CO2 under mild temperature (absorber: 40–65 ◦C;
stripper: 100–120 ◦C) and pressure (1–2 bar) conditions [4,5]. However, amines are corrosive
and cause equipment problems and, through their easy degradation by oxidation reaction,
can be potentially toxic to the environment [5–8]. Additionally, another major drawback
of amines is the high reboiler heat duty for desorption. An eco-friendly carbon capture
process has been proposed to replace the amines with potassium carbonate (K2CO3).
Potassium carbonate is less toxic and less corrosive than amines, and is considered a
particularly attractive wet chemical absorbent as it has fewer energy requirements for its
regeneration [9].

In this study, the absorption of CO2 using potassium carbonate solution is investigated
as well as its regeneration. ASPEN PLUS® software is used to evaluate the operating
parameters of the CO2 capture pilot unit.

2. Materials and Methods

In this study, the CO2 capture pilot unit using the K2CO3 solution was simulated using
the ASPEN PLUS® V11 software.
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2.1. Rate Based Method

CO2 capture can be modelled in Aspen Plus®, either as a thermodynamic model or
as a rate model. In this study, the methodology for a rate model is used. The rate of
absorption and desorption is determined by two mechanisms, mass transfer and chemical
reaction, which, when combined with mass and energy balance equations, determines the
concentration and temperature along the column [10,11].

Specifically, in this work, the electrolyte NRTL method is chosen for computing liquid
phase properties and RK equation of state is chosen for computing vapor phase properties.
CO2, H2S, N2, O2, CO, and H2 are selected as Henry-components, to which Henry’s law
is applied, while the activity coefficient basis is aqueous. All the data are retrieved from
Aspen Plus® databank and chemical equilibrium is assumed [12,13].

In post-combustion capture applications, the absorber is operated close to atmospheric
pressure, which is similar to the input stream of flue gas. When CO2 is absorbed into
K2CO3 solvents, particularly at high concentrations of K2CO3, both physical reactions
and chemical reactions occur [14,15]. The summary of the reactions for the absorber and
stripper specifications are:

CO2 + 2H2O←→ H3O+ + HCO3
− (1)

HCO3
− + H2O←→ H3O+ + CO3

−2 (2)

2H2O←→ H3O+ + OH- (3)

H2O + H2S←→ HS− + H3O+ (4)

H2O + HS− ←→ S−2 + H3O+ (5)

KOH→ K+ + OH− (6)

2.2. Simulation

The specifications and operating conditions are presented in Table 1. A schematic
flowsheet developed in this study is presented in Figure 1.
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Table 1. Simulation parameters.

Parameters Values

Absorber Temperature (◦C) 35
Absorber Pressure (bar) 1

Stripper Temperature (◦C) 80, 85, 100
Stripper Pressure (bar) 0.3, 0.7, 1

Gas flow rate (slpm) 1
Solvent flow rate (slpm) 0.1

Concentration of K2CO3 (%v/v) 15, 20, 25
Concentration of CO2 (%v/v) 15

Two main streams were specified: the solvent stream named “SOLVN”, and the flue
gas stream “FLUEIN”. The flue gas was considered to be composed of CO2 and N2 while
other components, such as H2O, O2, and SO2, are neglected. A solvent makeup stream
was added to the recycled stream before entering the absorber in order to compensate
for the solvent loss during the absorption and stripping process. The solvent was added
at atmospheric pressure and at a temperature of 35 ◦C. From the absorber, a gas stream
containing almost no carbon dioxide is released. Meanwhile, the liquid stream, which
is rich in solvent, leaves the absorber and is pressurized and heated before entering the
stripper. From the stripper, a gaseous stream of CO2 is produced, while the liquid solvent
stream is recycled back to the absorber.

An analysis of variance (ANOVA) was performed to estimate the influence of param-
eters on the absorption of carbon dioxide, and the CO2 regeneration with independent
parameters: (a) stripper temperature; (b) stripper pressure; and (c) concentration of solvent.

3. Results

The results of the ANOVA analysis are presented in Tables 2 and 3. All 27 cases were
simulated based on the Aspen Plus flow sheet (Figure 1) for two responses: absorption of
CO2 efficiency, and regeneration of CO2 efficiency. The CO2 absorption efficiency for all
cases exceeded 99.8%, and the simulation results for CO2 recovery efficiency are shown in
Figure 2.

Table 2. Effects of parameters on regeneration of CO2 efficiency.

Sum of Squares Mean Square F Value p Value

Stripper pressure 1.6902 0.8451 101.3366 7.9357 × 10−12

Stripper temperature 0.3185 0.1592 2.0396 1.5562 × 10−5

Error 0.1835 0.0083

Table 3. Effects of parameters on absorption of CO2 efficiency.

Sum of Squares Mean Square F Value p Value

Solvent concentration 2.1473 × 10−6 1.0736 × 10−6 20.0785 7.5094 × 10−6

Error 1.2833 × 10−6 5.3472 × 10−8
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4. Discussion

ASPEN PLUS® software was used to find the optimal operating conditions of the CO2
capture pilot unit. The parameters studied were stripper pressure, stripper temperature,
and solvent concentration. The CO2 absorption in all cases exceeded 99.8%. The increase in
potassium carbonate solvent has a subtle decrease in absorption of CO2. This is inconsistent
with the parametric analysis of K2CO3 concentration conducted by Ayittey [16]. This
differentiation is due to the small variation in CO2 absorption values. The regeneration of
CO2 showed a large variation of values depending on the stripper operating conditions.
Figure 2a shows that reducing the pressure of stripper significantly increases CO2 recovery
with a fine linear correlation (R2 > 0.785). Greater regeneration of CO2 is observed when
the stripper temperature is higher, as confirmed in Figure 2b. There is a perfect linear
correlation of stripper temperature with regeneration of CO2 (R2 > 0.963). The concentration
of potassium carbonate in the liquid absorber is not expected to affect the regeneration of
carbon dioxide (Figure 2c).

An analysis of variance (ANOVA) was conducted to estimate the influence of param-
eters on the absorption of carbon dioxide and the CO2 regeneration. Stripper pressure
and stripper temperature were chosen as independent variables, as they were suggested
to influence CO2 recovery. The results of two-way ANOVA analysis were evaluated for
CO2 recovery as the p-value and F-factor. As shown in Table 2, the statistically significant
parameters for the regeneration of CO2 are the stripper pressure and the temperature of the
stripper, with a p value lower to the level of 0.05. In addition, a one-way ANOVA analysis
showed that the concentration of K2CO3 is statistically significant for the absorption of
carbon dioxide (Table 3).
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5. Conclusions

An eco-friendly carbon dioxide capture process is studied in this research using
ASPEN PLUS® software. The capture and recovery of CO2 were simulated in an absorption
and a desorption column using potassium carbonate. The parameters examined were the
concentration of K2CO3, and the temperature and pressure of the stripper. Stripper pressure
and stripper temperature influence the regeneration of CO2, as shown in the analysis of
variance (ANOVA).
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