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Abstract: One way to diagnose COVID-19 is to use the Polymerase Chain Reaction (PCR) test.
However, this test is rather invasive. An alternative would be to use chest images of the patients to
diagnose if the patient has COVID-19. These chest X-ray images have to be manually annotated by
a medical professional such as a radiologist, and due to privacy concerns, getting access to readily
available and annotated COVID-19 chest X-ray images is difficult. In order to train a deep learning
model to perform image classification tasks, it is prudent to train the deep-learning model on a
large enough dataset to avoid the problem of overfitting. In this paper, we explore using Generative
Adversarial Networks (GANs) as a form of data augmentation technique to enlarge the training data
for deep learning models. We first explored how the synthetic data generated by GANs are affected
by the training size. Following which, we compared the performance of the two different GAN
architectures, namely the Deep Convolutional Generative Adversarial Networks (DCGAN) and the
Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP). We successfully
used GANs to generate synthetic COVID-19 chest X-ray images with a Fréchet Inception Distance
(FID) score that was below 2.

Keywords: COVID-19; chest X-rays; Generative Adversarial Networks (GANs); synthetic images;
Deep Convolutional Generative Adversarial Networks (DCGAN); Wasserstein Generative Adversarial
Networks with gradient penalty (WGAN-GP)

1. Introduction

Medical data are often small in quantity and hard to come by due to data privacy
reasons. For COVID-19 Chest X-ray analysis, specialized medical professionals such as a
radiologist must physically and manually inspect the chest X-rays. As such, such medical
data is costly and time-consuming to produce. Machine learning and deep learning models
are excellent at solving computer vision problems such as image classification. However,
the training models usually overfit a small dataset. Data augmentation is one of the
most commonly used methods to aid deep learning models and prevent overfitting. Data
augmentation is a valuable technique to enlarge the training dataset and provide more
training data for the deep learning models. Data augmented using GANs allows new data
that follows closely to the original distribution of the training data without adding too much
noise. In this paper, we provide a deep learning approach to data augmentation through the
application of Generative Adversarial Networks (GANs). In Section 2, we introduce related
work in the generation of synthetic X-ray images using Generative Adversarial Networks
(GANs), followed by Section 3, where we introduce our methodology. In Section 4, we
show the results and make comparisons. Lastly, we draw our conclusions in Section 5 and
provide some suggestions for future work in Section 6.
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2. Related Work

Generative Adversarial Networks (GAN) is a framework that enables deep learning
models to learn the data distribution from the training data to produce realistic synthetic
data. Goodfella, I., J.; et al. [1] introduced the Generative Adversarial Network (GAN). A
typical GAN framework consists of two separate deep learning models: a generator and
a discriminator. In the GAN architecture, the generator’s main objective was to produce
synthetic data to fool the discriminator into thinking that the synthetic data was the actual
data by learning the distribution of the training data. At the same time, the discriminator’s
main objective was to learn and distinguish between the actual training data and the
generated data by the generator. Data augmentation is a technique to modify the data
slightly by adding noise to increase the training dataset for deep learning models. In
the following section, we present some relevant works on using Generative Adversarial
Networks (GAN) to generate synthetic chest images. Researchers from Qassim University
explored using GAN to expand all classes of chest X-rays with respiratory issues to achieve
a more balanced dataset, as the number of typical chest X-ray images was significantly
higher than that of those with respiratory issues. The study suggested that augmented data
can increase the accuracy of image classifiers [2].

Further, researchers from Harrisburg University of Science and Technology explored
using DCGAN to generate chest X-ray images, where the generated chest X-ray images
achieved an Fréchet Inception Distance (FID) score of 1.289 and a CNN image classifier
trained on the generated images achieved an accuracy of 95.5%, a 3.5% improvement over
traditional data augmentation techniques [3].

Later, Sharmila, V.J., [4] explored the use of DCGAN to generate synthetic chest
X-ray images, allowing the Convolutional Neural Network (CNN) image classifier to
achieve higher accuracy than the pre- trained image classifier. In addition, researchers from
Delhi Technological University explored using Deep Convolutional Generative Adversarial
Networks (DCGAN) to generate COVID-19-positive chest CT images. They found that
validating the COVID-19 chest images was challenging, as they needed a medical profes-
sional to validate them manually. Instead, they validated the generated COVID-19 chest
images using a pre-trained DenseNet169 model, achieving an accuracy of 40% higher than
the baseline model [5].

Later, researchers from the Massachusetts Institute of Technology [6] explored condi-
tional GANs for data augmentation in chest X-ray classification. In their work, they found
that the data augmentation with GAN provided the best improvement when applied to
small training datasets, and the data augmentation from GAN even gave no or negative
improvement for large training datasets. Rehman, N.U., et al. [7] used a combined dataset
of X-ray modalities for chest disease detection by including a COVID-19 X-ray imaging
dataset. To normalize the data, data augmentation was performed. This preprocessed
data removed the data bias. To make the proposed study more promising, Rehman, N.U.,
et al. [7] used two methods of validation (5- and 10-fold). They observed from the results
that more folding made the results more accurate. This means that the proposed study can
be used to detect multi-class chest disease.

Often the images in databases have low contrast; therefore, Khan, M.A.; et al. [8]
implemented a new hybrid method, and the contrast was improved. Improvement of the
contrasts plays a key role in obtaining useful features. Khan, M.A., et al. [8] developed a
new fully automated deep learning feature fusion-based method for the classification of
chest CT images originating from COVID-19-infected and healthy subjects.

In the paper by Venu & Ravula, [3], they suggested one potential way to improve the
DCGAN image quality was to replace the binary cross-entropy loss function in the DCGAN
with Wasserstein’s loss with gradient penalty. As such, in this paper, we synthesize chest X-
ray images using the DCGAN and the WGAN-GP and compare the performances of the two
different GANs using the FID score from the images generated. Later, Allioui, H., et al. [9]
proposed a unique way to minimize human effort in the extraction of medical image
masks by introducing an advanced version of the Deep Q-Network (DQN) architecture. As
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such, Allioui, H., et al. [9] enhanced deep reinforcement learning to select optimal masks
during the segmentation of medical images and provided a robust strategy for semantic
segmentation that uses a deep reinforcement learning model.

3. Methodology

Goodfellow, I.J.; et al. [1] describes in their paper that the GAN model reaches equilib-
rium when the generator can produce synthetic data that looks completely real while the
discriminator achieves an accuracy of 50% in distinguishing between actual and fake data.

minGmaxDV(D, G) = EX ∼ Pdata(x)
[logD(x)] + EZ ∼ Pz(z)[log (1− D(G(Z)))] (1)

The GAN model’s objective function is described in Equation (1). EX ∼ Pdata(x)
repre-

sents the expected value of all the real instances from the training data and EZ ∼ P(z) is the
expected value of all the fake instances from the generator. PZ(Z) is the noise data sampled
from a standard Gaussian distribution, G(Z) represents the noise data being mapped to
the distribution of the training data x by the generator. D(x) is the probability of the
discriminator correctly identifying the training data as real while D(G(Z)) represents the
probability of the discriminator identifying the generated data as real data.

During training, the GAN model will aim to maximize logD(x) which is the logarithm
of the D(x)’s probability of correctly identifying the correct labels for both the real training
data and the data generated by the G(x). Simultaneously, the GAN model will also minimize
1−logD(G(x)) which is the loss for the generator for being correctly identified by the D(x)
as fake. During training, the generator takes a random input and maps it to the data space
of the actual data. The input passes through a series of convolutional-transpose layers in
the neural network to generate a fake image resembling the training data. During training,
the discriminator acts as a binary classifier as it tries to distinguish between real and fake
data. The discriminator takes in the generated data as input and passes the data through a
series of convolution layers in the neural network to generate a scalar probability of the
data being real or fake.

3.1. Data

The COVID-19 positive images used to train the GAN models came from the COVID-
19-radiography database from Kaggle, [10,11]. The repository consists of 3616 COVID-19
positive images, 10,192 normal lung images, 6012 non-COVID lung infection images, and
1345 viral pneumonia images. All images were resized to 299 × 299. In this paper, we will
only be using the COVID-19 positive chest X-ray images to train the GAN model, as our
objective is to generate COVID-19 chest X-ray images. Examples of COVID-19 positive
chest X-ray images is shown in Figure 1 below.
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3.2. Image Pre-Processing

The input passes through a series of convolutional transpose layers in the neural
Contrast Limited Adaptive. Histogram Equalization (CLAHE) is used to pre-process the
images before training the GAN models. We used the OpenCV python library [12] to apply
CLAHE to the original training data, following which the COVID-19 chest X-ray images
will be resized from 299× 299 to 64× 64 and normalized from having pixel values between
[0, 255] to [−1, 1] before training the GAN models.

The application of the CLAHE technique to the chest X-ray images significantly
increases the contrast between the lungs and the non-lung regions of the image. The
increase in contrast was useful as it made the lung region more distinct from the non-lung
region. As such, we trained our GAN models with images pre-processed using CLAHE.

3.3. Deep Convolutional Generative Adversarial Network

Deep Convolutional Generative Adversarial Networks (DCGAN) are an extension of
the GAN model. DCGAN was first introduced by Radford, A., et al. [13]. In his paper, the
DCGAN architecture explicitly uses convolutional-transpose layers in the generator and
convolutional layers in the discriminator. In the generator, each convolutional-transpose
layer is followed by a batch norm layer and a ReLU layer, while a LeakyReLU layer follows
the convolution layer in the discriminator. The last layer in the discriminator uses a sigmoid
layer to predict the probability that the image is real or fake.

Following the paper on DCGAN by Radford, A., et al. [13], the paper on WGAN-GP by
Gulrajani, I., et al. [14], and the tutorial provided by PyTorch (Inkawhich), both the DCGAN
and WGAN-GP had the same architecture for their generator and discriminator except for
the loss function, where the DCGAN uses a binary cross-entropy loss function whereas the
WGAN-GP uses the Wasserstein’s distance with gradient penalty as its loss function.

For the architecture of the generator of the DCGAN, the generator takes in a 100 × 1 noise
vector into the input layer. Following the input layer are five convolution-transpose layers
to upsample the input. Next, each convolution-transpose layer was followed by a batch
norm layer and a ReLU layer, except for the last layer. The last layer, the output layer, has
a convolution-transpose layer followed by a Tanh layer that returns a 64 × 64 × 3 vector
with values between [−1, 1].

The input layer in the discriminator took in a 3 × 64 × 64 vector generated by the
generator. Following the input, a layer is composed of five convolution layers. Each
convolution layer is followed by a LeakyReLu layer with a slope of 0.2 except for the last
layer. The last layer, the output layer, is a convolution layer followed by a sigmoid layer
that outputs the probability of the image generated being real or fake.

The DCGAN model uses the binary cross-entropy loss function to calculate the loss
for both the generator and the discriminator.

3.4. Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)

WGAN-GP is also an extension of the original GAN mentioned in Goodfellow, I.J., et al. [1].
WGAN-GP was first mentioned in Gulrajani, I., et al. [14]. In Gulrajani, I., et al. [14], the
WGAN-GP uses a different loss function for both the generator and discriminator loss
as compared with the DCGAN described in Radford, A., et al. [13]. In the WGAN-GP
architecture, the discriminator, called the critic, omits the sigmoid layer in the last layer.
Instead of finding the probability that the input data given to the critic is real or fake,
the WGAN-GP determines the score of the input data using Wasserstein’s distance with
gradient penalty.

The WGAN-GP closely follows the architecture of the DCGAN for its generator and
discriminator. Except that the InstanceNorm layer was used instead of a batch norm in
the discriminator to allow the critic’s penalty to work as planned. Also, the discriminator
omits the sigmoid layer in the output layer as it does not calculate the probability of the
input data being real or fake. The WGAN-GP uses Wasserstein’s distance with gradient
penalty as opposed to the binary cross-entropy loss for calculating its loss. As opposed to
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DCGAN, where the discriminator calculates the probability of each image if it is real or
fake, the WGAN-GP utilizes the discriminator called critic to give each image a score. The
score which is used as the realness of the data is calculated using the Wasserstein’s distance
with gradient penalty.

Wasserstein’s distance with gradient penalty = Ex̂ ∼ Pg[D(x̂)]−Ex ∼ Pr[D(x)]+λE∼
x
∼ ∼

Px
[(||∇∼

x
D(
∼
x)||2 − 1)]2 (2)

In the Wasserstein’s distance with gradient penalty, D represents the set of 1-Lipschitz
functions. Ex̂ ∼ Pg refers to the expected value of all the fake instances generated by the
generator, Ex ∼ Pr refers to the expected value of all the real instances from the training
sample. Ex̂ ∼ Pg[D(x̂)]−Ex ∼ Pr[D(x)] refers to the Wasserstein’s distance between the

generated data and the actual training data. λ E∼
x
∼ ∼

Px
[(||∇∼

x
D(
∼
x)||2 − 1)]2 refers to the

gradient penalty used to enforce the 1-Lipschitz space for the critic of the WGAN-GP model.
The λ represents the gradient penalty coefficient, P∼

x
represents the distribution obtained

by uniformly sampling along a straight line between the real and generated distributions
Pr and Pg.

3.5. Experiment Methodology with GANs for Image Generation

We conducted three different experiments to understand how GAN works. In the
first experiment, we trained the DCGAN model with four datasets of different sizes. In
the second experiment, we tune the epoch hyperparameters using one of the four datasets
chosen from the first experiment. In the last experiment, we compared the performance
of the images generated by DCGAN and the WGAN-GP using the results from the first
two experiments.

As specified in the DCGAN paper by Radford, A., et al. [13], the DCGAN uses the
Adam optimizer with a learning rate of 0.0002 and a Beta1 of 0.5. Compared with the
WGAN-GP paper from Gulrajani, I., et al. [14], the WGAN-GP uses an Adam optimizer
with a learning rate of 0.0001, Beta1 of 0.5 and Beta2 of 0.9.

While GANs are capable of generating fake data that closely resembles the actual
training data, it is hard to evaluate the performance of GANs. One of the methods to
evaluate GANs is through the use of the Fréchet Inception Distance (FID) score, first
introduced in Heusel, M., et al. [15]. In his paper, he introduced the FID score as a metric to
measure how the GAN model is performing by comparing the generated images to the real
training images.

The FID score measures the quality of the images generated by the GAN by measuring
the Fréchet distance between the generated images and the actual training images. The
FID score is calculated based on the distribution of the real images used to train the GAN
model against the synthetic images generated by the GAN model.

The FID score is calculated based on the distribution of the real images used to train
the GAN model against the synthetic images generated by the GAN model. The FID metric
measures the Fréchet distance between two multidimensional Gaussian distributions, Xg
and Xr obtained from the 2048-dimensional activations of the InceptionV3 pooling layer
for the real images and generated images, respectively.

As a rule of thumb, the lower the FID score, the better the GAN is performing, as
the images generated by the GAN model are closer to the training images in terms of the
Fréchet distance between them.

4. Comparison and Results of the DCGAN and the WGAN-GP
4.1. Results of the DCGAN

The first experiment was conducted to understand how the different sizes of the
training datasets affect the quality of images generated by the DCGAN model. In the
experiment, we generated 1000 synthetic COVID-19 positive chest X-ray images from the
DCGAN models in [16,17] using four different datasets of varying sizes. The datasets
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contain 500, 1000, 1500, and 2000 actual COVID-19 images, respectively. Each of the
DCGANs were trained with 500 epochs and 128 batch sizes in order to obtain a fair
comparison between the DCGANs trained on different datasets. We obtained the FID
score for each of the four DCGAN models by comparing the 1000 images generated to the
training data used to train the DCGAN model. The FID score for the 1000 images generated
was calculated using the Pytorch-FID package from a public Github repository in Seitzer,
M. [18] since we only generated 1000 images, a sample much smaller than we used the
768 as the dimension number instead. With a sample size smaller than 2048, we will not
be able to take advantage of the InceptionV3 pool-layer [6,17,19] as such, we will use the
previous layer, which is a Pre-aux classifier with 768-dimensional features.

In Table 1 below, we display the FID score for all datasets. All the FID scores are
below 2, which means that the images generated by the DCGAN are similar to the original
training images, indicating that the DCGAN performed well in generating synthetic X-ray
Chest Images.

Table 1. FID Score for DCGAN Trained with Different Datasets.

Dataset Size (Number of Actual COVID-19
Positive Images)

FID Score of the Chest X-ray
Images Generated

500 1.763
1000 1.494
1500 1.405
2000 1.249

We notice that the FID scores for images generated by DCGAN trained on 1000 and
1500 images are relatively close, with only a slight difference of 0.089. This shows that
images generated by the DCGAN trained on 1000 images performs quite closely to the
images from DCGAN trained with 1500 images. This demonstrates the capabilities of
DCGAN to generate high-quality synthetic data despite having a smaller training dataset.

We can see in Figure 2 below, that at 50 epochs, the DCGAN model is able to generate
images that resemble chest X-ray images, although the images are very pixelated and blurry.
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Figure 2. Generated COVID-19 positive chest X-ray images with dataset of 1000 images at 50 epochs.

In Figure 3 below, we observed that the images at 500 epochs produced by the DC-
GAN are now less blurry as compared with the images in Figure 2 and have a much
higher resemblance to the COVID-19 chest X-ray images used to train the DCGAN model.
Thus, showing that the DCGAN model improves and generates higher-quality images as
training progresses.
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We observed in Figure 4 below that the GAN generator needed some time to ‘warm
up’ and that the generator experienced a high loss during the starting iterations. As the
generator continues to learn, the loss gradually reduced. However, the generator is still
rather unstable, as observed in Figure 4, where the generator’s loss is still fluctuating.
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The number of epochs used for training a model is a hyperparameter that directly
affects the quality of the deep learning model, as the number of epochs affects how the
model learns. The epoch hyperparameter is the number of times each training sample goes
through a complete pass in the entire neural network. A complete pass refers to both the
forward pass and the backward propagation.

Due to the limited computational resources and time needed to train the DCGAN
on a larger dataset, we focused on using the 1000 images dataset and batch sizes of
128 to train the DCGAN and fine-tune the epochs hyperparameter to obtain the best-
performing DCGAN.
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To strike a balance between finding the optimal epoch number to train the GAN model
and managing limited computational resources, we trained the DCGAN with 1000 images
as the training data up to 800 epochs. At every 100th epoch, starting from the 500th
epoch, we generated 1000 COVID-19 chest X-ray images to evaluate the performance of the
DCGAN at the current epoch using the FID score.

From Table 2, we observed that training the DCGAN longer may not result in better
performance due to the instability of the generator. The images generated by the DCGAN
have shown to improve in quality, as the FID score decreases from 1.451 at 500 epochs to
1.415 at 600 epochs and 1.399 at 700 epochs. However, at 800 epochs, the images generated
by the DCGAN perform worse as the FID of the images generated increases to 1.640. This
indicates that training longer does not equate to better performance for the DCGAN due to
the instability of the generator during training. From Table 2, we know that training the
DCGAN with 700 epochs will give us the best performing DCGAN model.

Table 2. FID Score of DCGAN at Different Epochs.

Epoch FID Score

500 1.451
600 1.415
700 1.399
800 1.640

4.2. Results for the WGAN-GP

We trained the WGAN-GP model [20] using 1000 COVID-19 chest X-ray images as the
training data. The hyperparameters used to train the WGAN-GP model are batch size 128
and epoch 700. Using this set of requirements ensured that the comparison between the
DCGAN and the WGAN-GP was fair.

From Figure 5 below, we see that at 700 epochs, the images generated by the WGAN-
GP model show high resemblance to chest X-ray images, but they are still pixelated. The
WGAN-GP Generator and Critic Loss were trained with a dataset of 1000 images, and the
WGAN-GP’s loss was stable, as it did not fluctuate randomly throughout the training.
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4.3. Comparison of the DCGAN and WGAN-GP

We used the FID score of the images generated by the two GAN models to compare
their performance. To allow for model comparisons, the two GAN models, DCGAN and
WGAN-GP, were trained with the same dataset consisting of 1000 COVID-19 chest X-ray
images and the hyperparameters batch size 128 and epoch 700. Table 3 displays the FID
scores of the two GAN models.

Table 3. FID for Images Generated by DCGAN and WPGAN-GP.

GAN Type FID Score

DCGAN 1.399
WGAN-GP 1.583

From Table 3 above, we found that, during training at batch size 128 and epoch 700, the
WGAN-GP performed worse than the DCGAN, as the images generated by the DCGAN
had a better FID score than the images generated by the WGAN-GP.

Table 4 showcases how the InceptionV3 COVID-19 image classifier performs with the
addition of augmented data from the GANs.

Table 4. Model Accuracy Metrics.

Dataset Accuracy Precision Recall F1 Score

Only COVID-19 positive 0.96 0.94 0.97 0.95

COVID-19 positive + images
generated from DCGAN 0.98 0.97 1 0.98

COVID-19 positive + images
generated from WGAN-GP 0.98 0.99 0.98 0.98

From Table 4 above, we observed that without the augmented COVID-19 chest X-ray
images from the GANs, the InceptionV3 COVID-19 image classifier already has pretty
good performance with an accuracy of 0.96. As such, the inclusion of augmented data from
the GAN model only manages to improve the performance of the InceptionV3 COVID-19
image classifier slightly, from 0.96 to 0.98. Even though the increase in performance is not
very significant, it signifies that the InceptionV3 COVID-19 image classifier is now more
robust as it has been trained on a larger dataset.

We also observed from Table 4 that, overall, the precision, recall, and F1-Score metrics
have shown slight improvement with the addition of data augmented by the GAN models.
From this experiment, we can conclude that the addition of augmented data from the
GAN models is indeed useful in improving the performance of the InceptionV3 COVID-19
image classifier.

5. Limitations of GANs

Even though GANs are very valuable for generating more data and X-ray images,
there are limitations to using GANs. Firstly, there’s still no intrinsic metric evaluation
present for better model training and generating complex outputs. In addition, for density
estimation, we still cannot predict the accuracy of the density of the evaluated model and
state that this image is dense enough to move forward with. The evaluation of the GANs
that are generating the data is being decided manually. GANs are elegant mechanisms for
data generation, but due to unstable training and unsupervised learning, it is difficult to
train and generate output.

6. Conclusions

We have demonstrated that GANs can successfully generate COVID-19 chest X-ray
images. We generated 1000 synthetic COVID-19 chest X-rays images with FID scores all
much lower than 2. We also found that it is not always necessary to train the GAN model
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with a larger dataset to achieve better results, as we found that the DCGAN trained with
1000 images performed relatively similarly to the DCGAN trained on 1500 images. Further,
due to how unstable the generator of the DCGAN is during training, training the DCGAN
longer may not lead to better results, as the DCGAN performed much better at 700 epochs
than at 800 epochs.

In addition, we also found that while WGAN-GP has a more stable training regimen
than DCGAN, it takes WGAN-GP much longer to achieve the same performance as the
DCGAN. In conclusion, GANs can avoid the problems that traditional data augmentation
methods cannot avoid, which is to generate new image data from the training data that
follows the same distribution as the training data without adding too much noise. Moreover,
GANs can generate high-quality and realistic image data even when trained on a small
dataset, which is undoubtedly very useful when training data and computational resources
are limited. When trained on a small dataset, deep learning models are often overfit.
With additional data generated from the GAN models, the problem of overfitting can
be overcome.

7. Future Work

A possible future study would be to generate images that are larger than 64 × 64
(Height × Width) and compare how the DCGAN and WGAN-GP would fare. In this
paper, we only managed to explore training the DCGAN up until the 800 epoch; in a
future study, we could explore training the DCGAN using different batch sizes as well.
In future iterations of this experiment, instead of focusing on using 1000 images to train
the GAN model, we could run the same experiment again but with a focus on a larger
training dataset.
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