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Abstract: For an internal combustion engine to attain greater fuel economy and performance per
amount of emissions, variable valve-timing is often used. In this study, a PD controller for an electric
driven planetary gear Variable Valve Timing (VVT) system is designed. The model under study
consists of an electric motor integrated with a planetary gear system. The phase angle of the camshaft
is controlled by VVT for the required torque and engine speed. A classical PD controller is designed
using the root locus method, which is then benchmarked against a GA-optimized PD controller.
Finally, a simulation study is carried out which demonstrates that GA-optimized controller has better
performance and capability to maintain an optimum phase angle for maximum brake power and
regulation of the fuel and air mixture.

Keywords: variable valve system; planetary gear unit; internal combustion engine; genetic algorithm

1. Introduction

There have been various advancements in internal combustion engines, primarily
due to emissions standards and regulations. Since harmful gases such as CO, NOx are
released in case of incomplete combustion, Variable Valve Timing is employed to operate
the valves for the intake and exhaust of fuel, air, and exhaust gases in the combustion
chamber. As a result, emissions can be reduced, which also leads to fuel conservation and
increased efficiency.

In general, VVTs are hydraulic systems. Hydraulic VVTs, however, have limitations,
which include the change in response and performance characteristics due to changes
in operating conditions such as temperature and oil viscosity. This led to the study of
other types of VVT systems, such as electro-pneumatic, electro-magnetic, cam-less, and
electric planetary systems. Comparing electric motor-driven VVT systems to hydraulic
VVT systems has led to concur that electrical VVT systems are independent of engine oil
pressure, hence offering better operational performance and emissions.

As far as closed-loop control design for the VVT systems is concerned, a linear con-
troller using loop-shaping has been investigated by Paden et al. [1]. Similarly, in [2], a
feedforward/feedback controller was studied for an HCCI combustion engine. Moreover,
multi-parametric model predictive control has widely been used for the design of VVT
systems [3,4]. Finally, in [5,6], an `2 `∞, and H∞ controller was investigated in the context
of VVT control. GA optimization, however, has not been used for the control design of
electric planetary VVT, but it is an effective approach due to its ability to search through
large design spaces and determine optimal solutions. Therefore, in this study, a GA-based
VVT controller is investigated. In correspondence, a root locus-tuned PD controller is also
developed and performance is compared between these two controllers.
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2. Linear Model Development

The simplified linear VVT model is explained in [5,6]. In this study, however, certain
assumptions are made; for example, the dynamics of the ring gear are ignored because
of the high inertia of the engine flywheel and crankshaft; the camshaft load which is the
disturbance parameter in the control system is also ignored for model simplification.

2.1. Motor Dynamics

The relationship between the voltage drop across the armature circuit and the torque
produced by the motor is represented by Ge(s) in Equation (1). Armature resistance,
inductance, motor torque constant, and back emf of the motor are represented by Lm, Rm,
Kτ and Km, respectively.

Ge(s) =
Kτ

Lms + Rm
. (1)

2.2. Planetary Gear System Dynamics

For model simplification, the planetary system is treated as having only one planet
gear and the friction present is ignored. Equation (2) represents the transfer function Gm(s),
which shows the relationship between the motor speed input to the planetary gear system
and the output to the camshaft.

Gm(s) =
1

Js + B
. (2)

Here, J is the sum of the inertia of the carrier and the equivalent inertia of the gears. B
is the friction coefficient, which depends on the engine oil viscosity, and it changes due to
temperature. The block diagram of the VVT model under study is shown in Figure 1.
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3. Controller Design

For closed-loop control design, a PD controller is developed. The resulting transfer
function which represents the system plant without the back emf (Km) is provided as

Geq(s) =
Kτ

Lm.J.s2 + (Lm.B + Rm.J)s + Rm.B
. (3)

Here, Geq(s) is the open-loop VVT transfer function without the back emf Km.

G(s) =
Geq(s)

1 + Geq(s).H(s)
. (4)

Equation (4) is used to determine the overall open loop transfer function shown in
Equation (5).

G(s) =
Kτ

Lm.J.s2 + (Lm.B + Rm.J)s + Rm.B + Kτ .Km
. (5)

The value of β, which is the frictional coefficient, depends on the viscosity of oil
and ranges from 0.5 Kgm2/s to 2 Kgm2/s. For normal working conditions, it is taken as
1 Kgm2/s. Putting the parameter values shown in Table 1 into Equation (5), we obtain
the open- and closed-loop transfer function as shown in Equations (6) and (7). From the
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analysis of these equations, the system is determined to be stable. The root locus plot is
shown in Figure 2a, where the poles lie at −97.3 and −7.7.

G(s) =
45

0.002s2 + 0.21s + 1.5
, (6)

T(s) =
45

0.002s2 + 0.21s + 46.5
. (7)

Table 1. Electric Planetary VVT System Model Parameters.

Parameter Value

Kτ 45 Nm/A
Rm 1 Ω

J 0.2 Kgm2

Lm 0.01 H
β 1 Kgm2/s

Km 1/90Vs
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PD Controller Design

A Proportional Derivative (PD) controller is designed to achieve the desired per-
formance. The general form of the PD controller is provided as GPD(s) = KP + KD.s .
A PD controller was chosen because of the overshoot requirements. The performance
requirements were set to be a maximum overshoot of 5% and a settling time of 0.01 s.

Using the conventional root-locus tuning method, the proportional and derivative
gains were determined to be 10 and 0.05, respectively. The root locus of the system with the
controller is shown in Figure 2b. The open- and closed-loop transfer functions alongside
the PD controller are shown in Equations (8) and (9), respectively.

GPD(s) =
2.25s + 450

0.002s2 + 0.21s + 1.5
, (8)

TPD(s) =
2.25s + 450

0.002s2 + 2.46s + 451.5
. (9)

The designed PD controller, as discussed before, will be used as a baseline controller
for comparison with an optimal controller.
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4. Controller Optimization Using Genetic Algorithm

GA is a search-centered optimization technique which is based on the Darwinian
theory of genetic evolution. It is significantly useful in the optimization of PID controller
parameters. The optimization performance of the controller design using GA is mainly
dependent on the selection of an appropriate cost function. For this system, the Integral of
Time-weighted Absolute Error (ITEA) is used as the cost function. Equation (10) represents
the mathematical expression of the cost function, where the error signal of the function
is denoted by e(t). Using the ITEA error function, proportional and derivative gains are
determined for the VVT system.

ITEA =
∫ ∞

0
t.|e(t)|.dt. (10)

The setup parameters of the GA optimization are shown in Table 2. The values of
KP and KD obtained using GA are 20 and 0.1693, respectively. Using these values, the
open-loop and closed-loop transfer functions are shown in Equations (11) and (12).

G(s) =
7.605s + 900

0.002s2 + 0.21s + 1.5
, (11)

T(s) =
7.605s + 900

0.002s2 + 7.815 + 901.5
. (12)

Table 2. Setup Parameters for the GA optimization.

Setting Parameter Value

Bounds forKP [0–20]
Bounds forKD [0–1]

Number of Variables 2
Population Type Double Vector

Creation Function Uniform
Selection Function Stochastic Uniform
Mutation Function Adaptive Feasible
Crossover Function Intermediate

The response of the GA-optimized VVT system for a step input is shown in Figure 3.
The step response shows that the performance of the system has considerably increased.
The improved settling time and rise time are determined to be 0.0009 s and 0.000568 s. The
overshoot was calculated to be 0.34%, while the steady-state error was calculated to be 0.0017.
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Performance Comparison of the Designed Controllers

The performance comparison of the PD controller designed using the root locus and
the GA-optimized controller is shown in Table 3 and plotted in Figure 3. The results validate
that the % parent overshoot decreased from 4.92% for the controller designed using the
root locus to 0.36% for the GA-optimized controller.

Table 3. Performance Characteristics Comparison of the Designed VVT Controllers.

Characteristic Without Controller Root-Locus Genetic Algorithm

Settling Time 0.0091 s 0.0016 s 0.000975 s
Rise Time 0.0723 s 0.0092 s 0.000568 s

% Overshoot 31.39% 4.92% 0.34%
Steady-State Error 0.0322 0.00322 0.0017

5. Conclusions

In this study, a motor-driven planetary VVT controller is explained. A PD controller
was designed using the root locus technique and served as the baseline controller in
comparison to a GA-optimized controller. Simulations are carried out in which the GA-
optimized controller showed an improved and optimal performance.

The linear model of the electric planetary VVT system is led in line with some as-
sumptions and simplifications. However, in real world, a non-linear model is followed
with high engine speeds for maximum power and fuel efficiency at low RPM. Therefore, in
future, an optimal controller can be developed consequent to these changing parameters
and non-linear behavior, which can be verified by its practical implementation.
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