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Abstract: Future networks would be dense, reducing the link length between users and the base
stations (BSs). Moreover, a higher frequency spectrum, such as millimeter wave (mmWave) will
be employed for providing high data rates and capacity but at the cost of increased path loss and
blockage. The challenges in a dense network are two-fold: firstly, small link lengths require taking
into account the BS height for optimum coverage performance; secondly, to mitigate signal loss at
high frequencies, the BS and users must be equipped with antenna arrays. In this work, we derive
mathematical expressions for signal-to-interference-plus-noise (SINR) coverage probability for a
three-dimensional mmWave network by considering the height of BS and the buildings’ blockage.
Uniform cylindrical antenna arrays are employed at BS and user equipment. Results show that there
exists a certain BS height for a particular BS density and cell radius at which the coverage probability
could be maximized.
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1. Introduction

Cellular networks at higher frequency spectra (such as mmWave band) provide high
data rates due to their wide bandwidth. However, the propagation at this band experiences
severe path loss and penetration loss, making the links highly vulnerable to blockage [1,2].
Moreover, future networks are envisaged to be dense, i.e., having more BSs per unit area
for increased network capacity. In such a dense network, user equipment (UE) lies in the
communication proximity of a BS, and the link lengths are equivalent to the BS heights.
Therefore it is important to model a three-dimensional (3D) network by taking into account
the BS height [3,4].

Prior works have mostly focused on two-dimensional mmWave networks [5–7]. Re-
cently, some literature has also contributed to the 3D network model of mmWave and
terahertz band networks [3,4,8–12]. The work in [8,12] consider a 3D ultra-dense network
with line-of-sight (LOS) and non-line-of-sight(NLOS) propagation but did not consider
BS and UE antenna gains. Whereas [3] considers an outdoor mmWave network and takes
into account the height of blockage and BS and UE antenna heights but does not take into
account elevation angles. The work in [10] considers the height of BS and 3D antenna
radiation patterns but does not consider the height of building blockages. Finally, [11]
considers a 3D terahertz indoor wireless network. Authors in [9] present a generalized
system model that includes blockages and BS and UE antenna arrays in a 3D framework. It
has also been shown that in a dense network with random UE height and at high frequency
with more penetration losses, the uniform cylindrical array (UcylA) is a preferred choice.
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In contrast to all the previous works mentioned above, we present a system model that
considers a 3D network with BS and UE equipped with UcylA antenna radiation pattern
accounting for their elevation angles. We also consider the height of building blockages
as well as the BS. As compared to the work in [9] that does not consider the features of
building blockage, our system model in this work also characterizes the impact of blockage
with different heights and widths.

2. System Model

In this work, the downlink of outdoor dense mmWave network is considered with
BSs and UEs distributed following the Poisson point process (PPP) having densities λ
and λU , respectively. Rectangular building blockages are distributed following another
independent PPP. We conduct our analysis for a typical UE placed at the origin. Minimum
path loss association is assumed between a UE and its serving BS. The network employs
universal frequency reuse, and at any time, each BS has at least one active user to serve
within its coverage area. Due to blockages, the link between typical UE and its serving
BS is either unblocked, i.e., LOS with probability PLOS(r), or blocked, i.e., non-LOS with
probability PNLOS(r). For separate path loss exponents, αL, αN are used for LOS and NLOS
paths according to the functions defined below [3],

l(r, h) =

{
(r2 + h2)

−αL/2 with probability PLOS(r) = e−δβr

(r2 + h2)
−αN/2 with probability PNLOS(r) = 1− e−δβr

(1)

where, β depends on the length and width of the building blockage, and δ depends on
exponentially distributed building height with mean µ and is given by δ = e−µh/µh [3].

The fading on the LOS and NLOS links follow independent Nakagami distribution
with the parameters denoted by NL and NN , respectively. Each BS is assumed to be mounted
at a height h above the ground. The BS is equipped with a uniform cylindrical array (UcylA)
that can be decomposed into two compound arrays, i.e., uniform circular array (UCA) on a
horizontal plane with array gain Gc(φ) and uniform linear array (ULA) on a vertical plane
with gain Gv(φ). Therefore, the UcylA gain is given as G(φ, θ) = Gc(φ)Gv(θ), with total
antenna elements N = Nc × Nv, where Nc are the antenna elements in UCA and Nv are the
antenna elements in ULA. The gains from UCA and ULA are given by [9]:

Gc(φ) = Jo

(
Nc

2

√
(cos φ− cos φo)

2 + (sin φ− sin φo)
2
)

(2)

Gv(φ) =
sin[π(sin θ − sin θo)Nv/2]
Nv sin[π(sin θ − sin θo)/2]

(3)

3. Analysis of SINR Coverage Probability

The SINR coverage probability, defined as the probability of having SINR greater
than a certain threshold value (T), is mathematically given by Pc(T) = P[SINR > T]. For
the LOS link between typical UE and reference BS, the received SINR at BS at a random
distance r is:

SINR =
|go|2G(φo, θo)l(r, h)

σ2 + ∑
z∈I
|gz|2G(φz, θz)l(Dz, hz)

(4)

Here, (φo, θo) represents the direction of the intended UE and (φz, θz) represents
the direction of interfering BS at a distance Dz. σ2 represents noise power, |go|2 and
|gz|2 are the gamma distributed fading power on the desired link and interfering links,
respectively. The beamforming gains G(φ, θ) are defined in terms of azimuth (φ) and
elevation (θ = arctan(h/r)) angles and l(r, h) is defined in (1).
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The distance distribution between UE and LOS or NLOS serving BS is obtained as
follows (the proof is omitted for brevity but can be obtained from [5]):

fRLOS(r) = 2πλre
−[δβr+2πλ[

−1+(1+δβr)e−δβr

(δβ)2
+ r

2
2αL/αN

+
−1+(1+δβr

2αL/αN )e−δβr
αL/αN

(δβ)2
]]

(5)

fRNLOS(r) = 2πλre
−[(1−δβr)+2πλ[

−1+(1+δβrαN /αL )e−δβrαN /αL

(δβ)2
+ r

2
2
+
−1+(1+δβr )e−δβr

(δβ)2
]]

(6)

The final coverage probability expression for i ∈ [LOS, NLOS] is given below,

Pc(T) =
Ni

∑
n=1

(−1)n+1
(

Ni
n

) ∫ ∞

0

e(−µiσ
2) ∏

i∈(LOS,NLOS)
LIz(µi)

 fR i (r)dr (7)

Here, LIz(µi) represents the Laplace transforms (LT) of interference is obtained
as follows:

LILOS(µL) = exp

(
−2πλ

(∫ ∞

r

(
1− 1

1 + µLG(φz, arctan(h/t))(t + hz)
− αL

2

)
te−δβtdt

))
(8)

LINLOS(µL) = exp

(
−2πλ

(∫ ∞

r
αL
αN

(
1− 1

1 + µLG(φz, arctan(h/t))(t + hz)
− αN

2

)
t(1− e−δβt)dt

))
(9)

Here, µL = ηLnT
|go |2G(φo ,θo)l(r,h) and similar expressions for LT can be obtained for the

NLOS link typical UE and reference BS.

4. Numerical Results and Discussions

This section presents the numerical simulation of derived expressions according to the
system parameter listed in Table 1.

Table 1. Parameters for numerical analysis.

Notation Parameter Value

fc Frequency 28 GHz
B Channel bandwidth 500 MHz
σ2 Noise power −77 dBm/Hz
NL Nakagami LOS fading parameter 3
αL LOS path loss exponent 2
h BS height 2 m, 20 m
β Blockage width parameter 0.0071, 0.0027

In Figure 1a, we examine the impact of UcylA at blockage parameters (β = 0.0071,
0.0027) representing different blockage densities. It can be observed that at high blockage
density (β = 0.0027), the coverage is improved by using a high configuration of the antenna
elements. Figure 1b presents the SINR coverage probability with respect to BS height
at different cell radius rc = 50, 100, 150 m for an antenna configuration N = Nc × Nv =
16 × 4. It can be seen that at these radii, the coverage probability reduces as the height of
BS is increased; because of increased interference power from nearby elevated BSs. The
detrimental effect of height is more severe in the case of low cell radius (rc = 50 m). It can
also be observed that for the case of rc = 50 m and 100 m, and at fixed BS height (e.g., 6 m),
a significant increase in coverage probability can be obtained by increasing the antenna
array size to 16 × 8 or 32 × 8. However, this figure also dictates that at a particular radius,
there is a certain range of BS height for which coverage probability can be improved by
increasing the array elements, after which coverage probability falls to zero. This gives
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designers a choice to select the optimum configuration of array size at a certain BS height
for different cell radii.
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Figure 1. Impact of different antenna configurations at different blockage parameters and for varying
BS height at different cell radii.

In Figure 2, we present a 3D plot to observe the joint impact of BS height and BS
density on the SINR coverage probability. It can be seen that there is a certain BS height at
a particular BS density that maximizes coverage probability. Consequently, this provides
network designers a choice to jointly optimize the BS density to BS height tradeoff.
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5. Conclusions

In this work, we present a 3D system model for a dense mmWave cellular network that
takes into account the height of BS and building blockage. A uniform cylindrical antenna
array is employed at BS and UE. We derive mathematical expressions for SINR coverage
probability that is dependent on various network parameters, such as BS density, height,
and antenna array size. Results show that the coverage performance is affected by the
proper choice of BS antenna height for a given cell radius and BS density. The array size is
shown to increase the coverage probability within a certain range of BS height only, after
which it reduces to zero due to increased network interference.
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