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Abstract: The Aluminum-Nickel alloy system exhibits good potential for rotor applications in electric
vehicles, which require good castability, high electrical conductivity (EC), and mechanical strength.
In the present study, the microstructure, hot tearing susceptibility (HTS), electrical conductivity, and
mechanical properties of binary Al-xNi (x: 1 to 5% wt%) alloys were investigated. The results showed
that the Al-1Ni alloy exhibited the highest EC of 57.6% IACS. However, increasing the Ni content
to 5% led to a decrease in EC and a significant reduction in HTS. In addition, increasing the Ni
content from 1 to 5% slightly enhanced the yield strength from 70.4 to 83.2 MPa showing a weak
strengthening effect. The effect of Si and Mg addition on the strength and EC of Al-1Ni alloy was
studied. By adding 0.6% Si and 0.6% Mg to the Al-1Ni alloy, the yield strength was enhanced to
156.6 MPa after T5 and 287.5 MPa after T6, respectively, while maintaining a high EC (51% IACS).
The significant improvement in yield strength was attributed to the presence of nanosized MgSi
precipitates as the strengthening phase, which was confirmed by TEM analysis.

Keywords: Al-Ni alloys; hot tearing susceptibility; electrical conductivity; mechanical strength

1. Introduction

Modern hybrid and electric vehicles in transportation industries require castable alloys
that exhibit high electrical conductivity (EC) as well as high strength [1]. Aluminum alloys
are desirable materials for these applications due to their low density, high strength-to-
weight ratio, and relatively high electrical conductivity [2]. Among the conventional Al
cast alloys, those with high strength exhibit poor electrical conductivity (less than 45%
IACS), such as A356, and the alloys possessing high EC have low yield strength (less than
100 MPa), such as Castasil 21 [1,3]. Therefore, it is necessary to develop novel Al alloys
with a good combination of castability, electrical conductivity, and strength.

Most of conventional Al cast alloys are based on the Al-Si eutectic system because
of their excellent casting characteristics, including good fluidity and resistance to hot
tearing [4]. Although the addition of Si improves the castability and strength of Al alloys,
it is detrimental to the EC [3] due to its relatively high solubility in Al (1.65 wt% in solid
solution) [5]. Therefore, an alternative system needs to be designed for castable rotor
applications. When adding an alloying element to Al, it can either dissolve into the Al
matrix or form precipitates if its concentration exceeds the solubility limit. In the case
of a dissolved alloying element, the Al matrix is distorted, interfering with the path of
electrons and resulting in a reduction in EC. On the other hand, alloying elements that form
precipitates have less impact on the EC since they do not cause as much distortion in the Al
lattice as the dissolved elements in the solid solution [5].
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Koutsoukis et al. [4] reported that the castability of the Al-Ni system is competitive
with Al-Si alloys. The high castability of Al-Ni alloys comes from their short freezing ranges
and the high-volume fraction of the eutectic phase [4,6]. In addition, the Al-Ni system
exhibits high EC because the maximum solid solubility of Ni in Al is 0.04 wt%, resulting in
a high-purity α-Al phase [5]. Due to this low solid solubility, almost all the Ni added to
Al forms an Al3Ni eutectic phase upon solidification of the Al-Ni system [4,5]. Thus, the
binary Al-Ni system cannot benefit from solid solution strengthening and precipitation
strengthening mechanisms. To improve the mechanical properties of Al-Ni alloys, alloying
elements that could provide precipitation strengthening in the Al matrix are desirable. It
is a common practice that the addition of Si and Mg is used to improve the mechanical
properties of Al alloys due to the formation of Mg2Si precipitates [7–9]. Many studies
revealed that the formation of nanosized Mg2Si precipitates in the microstructure via an
aging heat treatment significantly increased the mechanical properties of the Al alloys [8–10].
Considering the need for high EC, the amount of Si and Mg added to Al-Ni alloys should
be kept as low as possible to achieve a good combination of yield strength and EC.

The present study aims to develop a castable Al-Ni based system exhibiting high
EC and yield strength. The microstructure, castability, EC, and mechanical properties of
Al-xNi binary alloys (x = 1 to 5 wt%) were investigated. Based on the EC results and the
cost-effectiveness of the products, Al-1Ni is selected for microalloying with Si and Mg to
enhance the simultaneous requirements of both EC and yield strength.

2. Materials and Methods

Five experimental Al-Ni and Al-Ni-Si-Mg alloys were prepared. For each alloy, pure
aluminum (99.8%), Al-20%Ni and Al-50%Si master alloys, and pure Mg were melted in a
graphite crucible using an electrical resistance furnace. The actual chemical compositions
of the studied alloys are given in Table 1. The melt was held at the temperature of 70 ± 5 ◦C
above the liquidus temperature of each alloy and Ar-degassing for 20 min. Once the melt
was ready, it was poured into two permanent molds including (1) a steel constrained rod
casting (CRC) mold preheated at 250 ± 5 ◦C for evaluation of hot tearing susceptibility
(HTS), and (2) a copper thin-plate mold preheated at 400 ± 5 ◦C for preparing samples for
mechanical testing, EC measurements, and microstructural observation. The dimensions of
the cast plates were 100 mm × 80 mm with a thickness of 4 mm. The HTS of binary Al-Ni
alloys was predicted by thermodynamic simulation based on the Hu et al. model [11], and
the predicted results were compared to the experimental results of CRC samples, which
were evaluated based on the method presented in the previous studies [11,12].

Table 1. Chemical compositions of the alloys studied (wt%).

Alloys Ni Si Mg Fe Ti Al

Al-1Ni 1.18 0.05 0.002 0.07 0.03 Bal.

Al-2Ni 2.29 0.08 0.001 0.07 0.02 Bal.

Al-3.5Ni 3.43 0.06 0.001 0.07 0.02 Bal.

Al-5Ni 4.85 0.06 0.001 0.08 0.02 Bal.

Al-1Ni-0.6Si-0.6Mg 1.09 0.63 0.56 0.08 0.03 Bal.

The thin cast plates of Al-1Ni and Al-1Ni-Mg-Si alloys were subjected to T5 and T6
heat treatments. The T6 heat treatment consists of solutionizing at 520 ◦C for 2 h and aging
at 180 ◦C for 24 h, and for T5 the cast samples were exposed at 180 ◦C for 24 h. The samples
were cut in the cross section for microstructural evaluation using optical microscopy (OM),
scanning electron microscopy (SEM), and transaction electron microscopy (TEM). EC was
measured using a Sigmascope SMP10 unit with a frequency of 480 kHz based on ASTM
E1004. Ten measurements were taken from each sample to obtain the average value of
EC in % IACS. Mechanical properties were evaluated by microhardness measurements
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and tensile tests. The Vicker hardness test was carried out on at least eight measurements
for each sample with a load of 25 g and a dwell time of 20 s, and the average values were
reported. The tensile test samples were prepared according to ASTM-E8, and the test was
performed at ambient temperature with an extension rate of 0.5 mm/min. The tensile test
was repeated three times for each sample.

3. Result and Discussion
3.1. Al-Ni Binary Alloys
3.1.1. As-Cast Microstructure

The grain structures of the binary Al-Ni alloys are presented in Figure 1. The grain
structures in all four alloys were mainly dendritic equiaxed, which was remarkably re-
fined with increasing Ni content. This has been confirmed with quantitative grain size
measurements (Figure 1d). Increasing Ni content from 1 to 5 wt%, results in a considerable
decrease in the grain size from 99.3 to 38.6 µm, representing more than 60% reduction. It is
reported that the grain size is reversely related to the growth restriction factor (GRF) [13],
mC0(k−1), where k is the distribution coefficient between liquid and solid, m is the slope
of the liquid line, and C0 is the initial composition. According to GRF theory, solutes
restrict the growth rate of the growing interface, which allows time for further nucleation
to occur [13]. Parameters k and m for Ni in aluminum are 0.007 and −3.3, respectively [13].
GRF for Al-Ni alloys is calculated and presented in Figure 1d. As shown in Figure 1d, by
increasing the Ni content from 1 to 5 wt%, GRF increased from 3.28 to 16.4, resulting in a
reduction in grain size.
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Figure 1. Polarized light optical micrographs showing the grain structure of (a) Al-1Ni, (b) Al-3.5Ni,
(c) Al-5Ni, and (d) the measured grain size and the growth restriction factor (GRF) as a function of
Ni content.

SEM micrographs of the Al-Ni alloys are shown in Figure 2. All the alloys show similar
microstructures, featuring primary α-Al dendrites (as the matrix) and eutectic Al-Al3Ni
phases. The corresponding EDS analysis of the points in Figure 2a is presented in Table 2. It
has been reported that the solid solubility of Ni in Al is negligible [5], as shown in Table 2;
this is consistent with our EDS results, which indicated that almost all the added Ni formed
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the Al3Ni intermetallics. The area fraction of eutectic Al3Ni intermetallics is calculated by
image analysis of optical micrographs and the results are presented in Figure 2d. The area
fraction of eutectic Al3Ni increases from 7.6 to 34.8% with increasing Ni content from 1 to
5 wt%.
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Figure 2. SEM micrographs (a) Al-1Ni, (b) Al-3.5Ni, (c) Al-5Ni, and (d) area fraction of eutectic Al3Ni
intermetallics in binary alloys as a function of Ni content.

Table 2. EDS analysis from the points indicated in Figure 2a.

Point
Elements (wt%)

Al Ni

1 100 0
2 71.43 28.57

3.1.2. Hot Tearing Susceptibility (HTS)

Based on the model developed by Hu et al. [11] for the prediction of HTS, the maximum
steepness of the plot of T-(fS)1/3, for an equiaxed grain structure can be considered as an
index for the hot tearing susceptibility, where T is temperature and fS is the fraction of solid.
As the slope of dT/d(fS)1/3 is negative, the absolute value of the slope is considered the
HTS index [11]. For the prediction of HTS, the maximum slope of the curves |dT/d(fS)1/3|
just before the eutectic reaction is calculated.

T vs. (fS)1/3 plots for four Al-Ni alloys are presented in Figure 3a. The predicted results
are presented in Figure 3b and compared with the experimental results. Both experimental
and predicted results show that by increasing Ni content, the hot tearing susceptibility
of Al-Ni alloys reduced. There are many factors affecting the HTS of an alloy, including
freezing range [11], grain refinement [14,15], and eutectic fraction [11]. Generally, hot
tearing resistance increases with increasing eutectic liquid fraction [11] and decreasing
grain size [16]. In this study, the decrease of the HTS with Ni addition could be explained
by the grain size reduction (as shown in Figure 1) and the increase in the area fraction of
the Al3Ni eutectic phase (Figure 2). Grain refinement reduces the hot tearing sensitivity of
alloys because it delays the grain coherency point and consequently improves the feeding
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ability of the remaining melt [16]. In addition, increasing the volume fraction of the eutectic
phases can reduce the HTS by refilling the initially formed tears.
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3.1.3. Electrical Conductivity and Mechanical Properties

The measured EC, yield strength (YS), and microhardness (HV) of Al-Ni alloys are
presented in Figure 4. With increasing Ni content, the EC decreased from 57.6% IACS in
Al-1Ni to 52.8% IACS in Al-5Ni. Comparing these results with the literature, the effect of
Ni addition on the EC of Al alloys is far less destructive than Si addition [3,17]. According
to Mulazimoglu et al. [17] the addition of 2 wt% Si to Al decreased the EC of Al to less
than 50% IACS. The better EC of Al-Ni based alloys can be associated with the lower solid
solubility of Ni in Al (0.04 wt% at eutectic temperature) compared to Si (1.65 wt% at eutectic
temperature) [5]. EDS analysis of the α-Al phase (Table 2) indicates that the solid solubility
of Ni in Al is negligible. Increasing Ni from 1 to 5 wt% decreased the EC of Al-Ni alloys by
8%, which is attributed to the increasing supersaturation level of Ni in the Al matrix and
the increasing proportion of the Al3Ni intermetallic phase (Figure 2d).
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Ni content.

According to Figure 4, with increasing Ni addition up to 5 wt%, the microhardness
of samples moderately increased from 30.6 to 38.5 HV, and the YS increased from 70.4 to
83.2 MPa as a result of the increase in the area fraction of eutectic Al3Ni intermetallics.
According to Sankanit et al. [18], the Al3Ni intermetallic phase is noticeably harder than
the Al matrix. Therefore, increasing the amount of eutectic Al3Ni intermetallics in Al-Ni
alloys improves the mechanical strengths (hardness and YS) attributed to the strengthening
effect of the Al3Ni intermetallic phase [18].
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3.2. Microalloying with Si and Mg

Developing high-performance Al-based castable rotor products is challenging; this
becomes even more difficult when taking into account the mutually exclusive properties of
EC, mechanical strength and castability at the same time. Among the four binary Al-Ni
alloys studied, Al-1Ni exhibited the best EC, with an experimental HTS value comparable
to Al-2Ni (Figure 3b). In addition to the higher EC, because of the high cost of Ni, it
was decided to keep Ni content as low as possible. Although the addition of Ni up to
5 wt% improved the mechanical strength, the strengthening of eutectic Al3Ni intermetallics
was far too weak (Figure 4). To significantly improve the strength of rotor products, it is
necessary to introduce highly efficient precipitates as the strengthening phase. In this study,
the Al-1Ni alloy was selected to investigate the microalloying effect with Si and Mg on
strength and EC.

3.2.1. Microstructure of Al-1Ni-0.6Si-0.6Mg

The microstructure of the Al-1Ni-0.6Si-0.6Mg alloy in as-cast and solution-treated
conditions is shown in Figure 5. The SEM-EDS analysis was conducted to identify the
different phases observed in Figure 5a, and the results are presented in Table 3. In the
as-cast condition, the microstructure of the Al-1Ni-0.6Si-0.6Mg alloy consists of a network
of irregular shaped Al3Ni intermetallics (marked as #1) and primary Mg2Si phase (marked
as #3), distributed in the interdendritic region. In addition, a small amount of round
Al(SiMgNi) ternary eutectic phase was mainly distributed in the α-Al matrix (marked as
#2). After solution heat treatment, the Al(SiMgNi/Fe) ternary eutectic phase was completely
dissolved, and little Mg2Si was occasionally detected. In contrast, no remarkable change in
the Al3Ni intermetallics was observed.
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Table 3. EDS analysis from the points indicated in Figure 5a.

Location Phase Type
Elements, wt%

Ni Si Mg Al

Point 1 Al3Ni 29.30 - - 70.70
Point 2 Al(SiMgNi/Fe) 10.10 17.90 6.26 65.74
Point 3 Mg2Si - 37.35 62.65 -

Figure 6 displays the typical bright-field TEM images showing the evolution of nano-
sized Mg/Si precipitates after T5 and T6 heat treatment. All TEM images were taken
along the [001]Al zone axis. As shown in Figure 6a, the precipitates after T5 temper are
fine (41.9 nm in length and 4.03 ± 0.15 nm2 cross-sectional area), which is believed to
be β′′. On the other hand, the precipitates after T6 temper are slightly larger than those
in the T5-temper. According to the precipitate size, there is a mixture of β′′ and β′, but
the major strengthening phase is β′′. The T6 samples underwent the high-temperature
solution treatment (520 ◦C for 2 h) before aging, which leads to more Si and Mg solute
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atoms dissolved in the Al matrix. Therefore, during aging there are more solute atoms to
be extracted from the matrix to form a high number density of MgSi precipitates.
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3.2.2. Electrical Conductivity and Mechanical Properties

The EC and YS of Al-1Ni and Al-1Ni-0.6Si-0.6Mg alloys are presented in Figure 7 and
compared with other alloys from the literature [1]. By adding Si and Mg to Al-1Ni, the
electrical conductivity decreased from 57.6 to 48.5% IACS in the as-cast condition. The
lower electrical conductivity could be explained by the presence of Si and Mg solute atoms
in the Al, which has a detrimental effect on scattering electrons. After the T5 and T6 heat
treatments, electrical conductivity increased to 51% IACS, since the precipitation of MgSi
particles after aging removes Si and Mg solute atoms from the α-Al matrix.
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Figure 7. Electrical conductivity and yield strength of Al-1Ni and Al-1Ni-0.6Si-0.6Mg alloys compared
with other alloys from the literature [1].

The tensile results indicated that the binary Al-1Ni alloys are not heat-treatable and
their YS remained at a low level (~75 MPa after T5 and T6). However, Al-1Ni-0.6Si-0.6Mg
after T5 and T6 exhibited a YS of 156.6 and 287.5 MPa, respectively, much higher than the
binary Al-1Ni alloy. The formation of a high number density of nanosized MgSi precipitates
after aging is the main cause for the improvement of mechanical properties of Al-1Ni-0.6Si-
0.6Mg. This alloy with EC of 51% IACS and YS of 157–287 MPa in both T5 and T6 conditions,
can well fulfill the targeted specification for electric rotor applications. According to the
results in Figure 7, the designed alloy in T5 condition already exhibited a good combination
of EC and strength relative to other Al-Si and Al-Ni-based alloys reported in the literature.
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When treated in T6 temper, the YS of this alloy was significantly enhanced and even higher
than conventional cast Al-Si alloys (A356 and A319), while maintaining excellent EC.

4. Conclusions

The microstructure, electrical conductivity, mechanical properties, and castability of
Al-xNi (x = 1 to 5 wt%) and Al-1Ni-0.6Si-0.6Mg alloys were investigated. The Al-1Ni
presented the highest EC of 57.6% IACS; by increasing Ni content to 5%, the EC was
reduced to 52.8% IACS, whereas the HTS index decreased from 84 in Al-1Ni to 17 in Al-5Ni.
By increasing Ni content from 1 to 5%, the yield strength only slightly increased from
70.4 to 83.2 MPa. The Al-Ni binary alloys suffered from low mechanical strength, due to the
lack of solid solution hardening and precipitation strengthening in the Al matrix. Therefore,
the impact of microalloying with Si and Mg in the Al-1Ni alloy on strength and EC was
explored. The Al-1Ni-0.6Si-0.6Mg alloy exhibited a YS of 156.6 MPa and 287.5 MPa after T5
and T6 tempers, respectively, while maintaining a high EC of 51% IACS. Thus, the newly
developed Al-1Ni-0.6Si-0.6Mg alloy exhibited an excellent combination of EC and yield
strength, which can well fulfil the targeted specification for electric rotor applications.
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