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Abstract: Accurate state estimation of a vehicle is essential for ensuring the effective operation of
stability control systems, particularly in dynamic road conditions. The side-slip angle serves as a
crucial parameter for vehicle handling and safety control. However, the commercially available
sensors for measuring side-slip angle are often expensive, prompting the utilization of estimation
methods that rely on vehicle dynamics and the available sensor measurements. This paper introduces
a novel observer for side-slip angles that employs a bicycle model and directly incorporates the lateral
accelerometer signal through roll angle estimation. Roll angle estimates are obtained using novel
complementary filters (NCF). Complementary filter tuning parameters are adjusted automatically
using the recursive least square estimation technique. The estimation performance of the mentioned
algorithms is verified using standard maneuvers through CarSim®.

Keywords: attitude estimation; non-linear complementary filter; sensor fusion; lateral acceleration
compensation; roll angle; side-slip angle

1. Introduction

Accurate estimation of sideslip angles is crucial for effective control of the vehicle’s
steering stability [1,2]. The measurement of the side-slip angle can be accomplished
through direct or indirect means, such as utilizing GPS or optical sensors. Nevertheless,
the measurements obtained through these methods exhibit high sensitivity to changes in
the surrounding environment and weather conditions. As a consequence, the reliability
of such measurements is considerably diminished. Moreover, this reliance on indirect
measurement techniques introduces additional costs to the overall system.

In order to address this challenge, several research endeavors have been undertaken
to explore feasible strategies for indirect estimation of the side-slip angle [3–7].

Fukada [4] approached entails limitations regarding vehicle dynamics due to the
non-linear region characteristics of tires in maneuvers like J-turns. Farrelly and P. Wellstead
developed an observer utilizing the kinematic model, but they did not account for the
influence of accelerometer errors and road disturbances on the roll and pitch angles [8].
H. Lee proposed a simple bicycle-model-based lateral velocity observer but it neglected
uncertainties related to accelerometers [9].

The paper comprises the following components. In Section 2, mathematical modeling
is discussed. In Section 3, a roll angle estimation method is introduced, which dynamically
determines the gain parameters, eliminating the necessity for manual tuning of the filter
and a novel side-slip angle observer is proposed using an altered bicycle model. The
simulation results under various conditions and steer inputs are discussed in Section 4.
Section 5 of the paper provides a summary that serves as the concluding section.
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2. Mathematical Modeling

The bicycle model shown in Figure 1 is commonly used to describe the lateral motion
of a vehicle [10]. It is a simplified linearized model that assumes a constant longitudinal
velocity vx and symmetrical lateral tire cornering stiffness of Cf and Cr. lf and lr are the
distances from the wheel center to the front and rear. m is the mass. Iz is the yaw moment
of inertia. u = δf is the steer angle input.ay is the lateral acceleration and r is the yaw rate.
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The system can be represented by the state space matrix formulation as follows:

A =

− 2(Cf + Cr)
mvx
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mvx2 − 1
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− 2(Cflf
2 + Crlr

2)
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 (1)
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mvx
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mvx
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D =
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u = δfandy =

[
r

ay
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(4)

3. Roll Angle and Side-Slip Angle Estimation
3.1. Adaptive Complementary Filter for Roll Angle of Ground Vehicle

The process of obtaining the roll angle estimate involves blending two initial estimates,
each applicable within different operational ranges. During this blending procedure, the
weights are chosen to consistently prioritize the more accurate estimate. Figure 2 depicts
the block diagram of a second-order complementary filter for real-time implementation. It
is important to ensure that the combined output of both filters results in a unity gain. As a
result, the low-pass filter can be represented by the following equation of G2(s):

G2(s) =
s2

s2 + as + b
(5)

Similarly, the equation for high pass filter is written as

1−G2(s) =
as + b

s2 + as + b
(6)

Variables a and b are deciding factors for this estimate, which rely on operating
conditions for different maneuvers.
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side-slip angle in Figure 4a and the RMSE for step input estimate is 6.7881 × 10−5. We 
further investigated the algorithm efficacy by using the DLC input as seen in Figure 4b, 
where an RMSE error of 5.2537 × 10−5 deg can be observed.  
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Figure 2. Adaptive complementary filter estimation block diagram.

3.2. Side-Slip Angle Estimation

The state estimate equation can be written as

x̂ = Ax̂ + Bu + L(y− Cx̂) (7)

where A, B and C matrices are state space model parameters. The estimation error, e, can
be expressed as Equation (8).

e = x− x̂,
.
e = (A− LC)e = Âe (8)

The observer gain matrix L, which can be determined using the pole placement
method, plays a crucial role in achieving this convergence.

4. Experiment and Results

The validation process involved conducting multiple standardized tests, including
step steer and double lane change maneuvers, and comparing the results obtained from
our analytical model with those generated by CarSim®.

Figure 3a shows the estimation of roll angles using NCF for the step input. RMSE
for roll angles for the step input is 0.0030 deg. Similarly, Figure 3b shows the results of
the DLC maneuver and the RMSE error for the roll angle is observed as 0.0022 deg. Once
the roll angle is estimated, we used the lateral acceleration equation to obtain the side-slip
angle estimate using the Luenberger observer. The step steer input was fed to estimate
the side-slip angle in Figure 4a and the RMSE for step input estimate is 6.7881 × 10−5. We
further investigated the algorithm efficacy by using the DLC input as seen in Figure 4b,
where an RMSE error of 5.2537 × 10−5 deg can be observed.
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5. Conclusions 
This research paper presents an innovative method for directly utilizing the lateral 

accelerometer signal to estimate the side-slip angle. In order to mitigate the influence of 
gravity-induced bias on the lateral accelerometer signal, we propose a vehicle roll angle 
estimator. This method offers a valuable contribution to the field and demonstrates 
promising potential for application. Observer performance is verified through CarSim® 
using different tests conducted under diverse road conditions and steering inputs. 
Incorporation of a lateral acceleration compensator improved the estimation results for 
the side-slip angle. 
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5. Conclusions

This research paper presents an innovative method for directly utilizing the lateral
accelerometer signal to estimate the side-slip angle. In order to mitigate the influence of
gravity-induced bias on the lateral accelerometer signal, we propose a vehicle roll angle
estimator. This method offers a valuable contribution to the field and demonstrates promis-
ing potential for application. Observer performance is verified through CarSim® using
different tests conducted under diverse road conditions and steering inputs. Incorporation
of a lateral acceleration compensator improved the estimation results for the side-slip angle.
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