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Abstract: Melanoma is one of the most aggressive forms of cancer. Early-stage diagnosis is therefore
a landmark for the success of the therapies and to improve the prognosis. Raman spectroscopy
represents a powerful and label-free approach for the molecular characterization of biological sam-
ples. Due to its level of detail, when applied to cancer tissues, Raman spectroscopy can help the
classification of cancer-related malignant degrees. However, there is a high similarity between Raman
spectra related to different cancerous tissues, which requires the use of sophisticated techniques for
the treatment of Raman data. In this work, we coupled Confocal Raman Microscopy and Machine
Learning techniques for the automatic classification of ex vivo melanoma tissues. In particular,
we compared the performance of a PCA+LDA routine with a Random Forest Classifier. The work
demonstrated excellent Machine Learning performances in classifying the tissues under investigation.
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1. Introduction

Melanoma is the leading cause of skin-cancer-related deaths in individuals under
30. The dramatic statistical data related to the evolution of melanoma are essentially
attributable to its rapid evolution, resulting in a high frequency of cases detected at an
advanced stage [1].

The gold standard for the melanoma diagnosis involves a visual examination followed
by a biopsy and histopathological analysis. The weakness of this protocol is mainly
represented by the qualitative inspection, which is strongly dependent on the expertise
of the dermatologist. Furthermore, melanoma often shows similarities to other types
of skin lesions, e.g., basal cell carcinoma or pigmented nevi. These drawbacks result in
a high occurrence of false positive cases after the visual examination and high frequency of
invasive and unnecessary tissue excisions [2]. For these reasons, the introduction of non-
invasive, powerful and cost-effective diagnostic protocols could represent an important
landmark to significantly reduce the melanoma-related morbidity.

Due to its high potential, Raman spectroscopy (RS) turns out to be one of the most stud-
ied approaches for cancer detection [3–5]. In fact, RS is able to provide rapidly molecular
information at an extraordinary level of detail, allowing to differentiate apparently identical
samples on the basis of their molecular differences [6]. Furthermore, RS is a label-free and
non-destructive technique that is potentially suitable for in vivo measurements.

However, the Raman signal is usually very weak. In particular, especially when the
Raman scattering is probed with visible radiation, the sample fluorescence could partially
mask the Raman component of the measured signal. In addition, the complexity and
richness of the information of the Raman spectra imposes the introduction of automatic
and sophisticated protocols to find the relevant differences among spectra. In this sense,
Machine Learning (ML) offers a series of powerful tools for the treatment and the interpre-
tation of “raw” Raman experimental data. For instance, Araujo et al. [2] developed a series
of ML protocols capable of distinguishing cutaneous melanoma and melanocytic naevi
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from fresh cutaneous tissues with high performances (AUC 0.95), allowing the detection of
a restricted spectral interval within the fingerprint region, which is relevant for the process
of detection. Baria et al. [7] tested machine learning routines, i.e., Linear Discriminant
Analysis and Artificial Neural Network, to analyze in vitro cell cultures with the aim of
detecting BRAF and NRAS gene mutations associated with the occurrence of melanoma.
The methods allowed detecting the two genes with accuracies larger than 90%, testifying to
the effectiveness in diagnosing the tumor.

In line with the aforementioned investigations, in this work, we coupled Confocal
Raman Microscopy and ML with the aim of detecting melanoma in ex vivo skin lesions. We
tested two ML approaches for the interpretation of the spectral data: Principal Component
Analysis (PCA) followed by Linear Discriminant Analysis (LDA) (PCA+LDA) and Random
Forest Classifier (RFC). The study resulted in discrimination accuracies larger than 97%.

2. Materials and Methods

The samples employed for the Raman analysis were ten 5 µm thick sections of formalin
fixed skin lesions, deposited on common glass slides, half of which corresponded to
melanoma (malignant tissue), and the other half corresponded to compound naevus (benign
tissue). The RS setup employed in this work was an HoribaTM Xplora Plus Confocal Raman
Microscope equipped with a 532 nm laser working at the power of 5.6 mW. The optical
system included a 100× objective collecting the backward scattered light, a pinhole of
diameter 100 µm and a 1200 gr/mm diffraction grating, resulting in a spectral resolution of
∼3 cm−1. We performed the spectral acquisition in portions of the samples characterized
by an abundance of melanocytes, which are considered promising sites for melanoma
detection. Each spectrum was obtained by accumulating 15 repetitions and with a single
spectrum acquisition time of 1 s. The final dataset included nb = 757 spectra of compound
naevi (benign lesions) and nm = 739 spectra of melanoma (malignant lesions). We analyzed
the spectral region of wave numbers between 400 and 1800 cm−1 (fingerprint region).

The raw dataset was subjected to a baseline subtraction according to the algorithm
proposed by Zhao et al. [8]. This algorithm is an iterative procedure based on subtracting
from the original spectra a polynomial fit in order to obtain a smoothed graph attributed
to the baseline contribution. This algorithm required as input parameters the polynomial
order, equal to 2, and the number of iterations, equal to 150. Finally, the spectra were
normalized with the Min–Max method [9] and rescaled by setting the mean to 0 and the
variance to 1.

In this work, we focused our attention on the problem of distinguishing two classes,
i.e., “benign” and “malignant”. To this aim, we adopted two ML protocols: a first protocol
was represented by Principal Component Analysis (PCA) followed by Linear Discriminant
Analysis (LDA) (PCA+LDA). In particular, we excluded all the principal components
except the first 25 to obtain a sum of the corresponding explained variance ratios larger
than 0.95 [10]. To make predictions, we considered only the first LDA component. We then
compared the performances of the PCA+LDA model to a second procedure based on the
Random Forest Classifier (RFC). In this case, wet set the number of trees in the forest to
1100 to minimize the Out-Of-Bag Error [11].

The performances of the aforementioned ML models were assessed through 10-Fold
Cross Validation [12]. Each fold was generated by randomly splitting the dataset into
a training set and a test set by following the proportion 80/20, respectively. We quantified
the ML performances in terms of the accuracy, the sensitivity and the specificity averaged
over the 10 folds, which were calculated by considering “malignant” as the positive class.

3. Results

Figure 1a shows the mean Raman spectra associated to the benign and the malignant
skin tissues. A qualitative interpretation of the Raman spectra allowed identifying a spectral
region located between 400 and ∼1200 cm−1 and another spectral interval between ∼1650
and ∼1800 cm−1, in which the Raman signal associated to the malignant tissues tends
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to be larger than the Raman signal of the benign tissues. We attributed these bands
to chemical compounds, e.g., phospholipids (427, 529, 862 and 1710 cm−1) and nucleic
acids (469, 571, 625, 685 and 790 cm−1) [13], whose higher concentration in malignant
tissues is associated to the uncontrolled cellular proliferation characterizing the cancer. The
remaining spectral region, located between ∼1200 and ∼1650 cm−1, tends to show the
opposite trend, i.e., a decreased signal of the malignant tissue with respect to the benign
tissues. Despite vibrational modes associated to cell proteins and nucleic acids falling
within these spectral bands, an attribution to this chemical compounds would contradict
the aforementioned trend. Another possible interpretation of this Raman band can be found
in melanin. In fact, former studies pointed out that despite melanoma being characterized
by an uncontrolled proliferation of melanocytes, i.e., the cells deputize to the production
of melanin, this form of cancer is not necessarily associated to an increased concentration
of melanin [2]. This fact could explain the large standard deviations, represented by the
shaded areas, associated to the mean spectra in this spectral interval.

Figure 1. (a) Averaged Raman spectra of benign (red) and malignant skin lesions (green). The shaded
areas represent the standard deviation; (b) score plot of the first two principal components.

In Figure 1b, the score plot, showing the first two principal components, highlights
how the malignant tissues result in a dense cluster of points, while the benign counterparts
appear as a more sparse cloud. In addition, except for the superposition of a relatively
small number of points, the classes “benign” and “malignant” appear to be well separated
and simply connected domains. Furthermore, the two classes can be roughly separated
with a straight line. This trend reflects the high performances of the PCA+LDA routine,
resulting in 0.96 ± 0.01 accuracy, 0.98 ± 0.01 sensitivity and 0.94 ± 0.02 specificity. This
demonstrated the effectiveness of the PCA+LDA routine in melanoma detection.

The partial superposition between the “benign” and the “malignant” classes in the
score plot pushed us to compare the performance of PCA+LDA to non-linear models. In this
sense, the Random Forest Classifier (RFC) led to 0.97 ± 0.01 accuracy, 0.97 ± 0.01 sensitivity
and 0.97 ± 0.01 specificity. The performances of the two ML protocols are comparable with
a slight improvement of the sensitivity provided by RFC. The aforementioned performances
are comparable with results of former investigations. For instance, Lima et al. [14] proposed
a study performed either in in vivo or ex vivo skin tissues that aimed at distinguishing
non-melanoma skin cancer from normal tissues from spectra obtained through a Raman
spectrometer working in the infrared range. A discriminant analysis approach applied on
the resulting experimental data allowed distinguishing normal tissues from lesions with
accuracies reaching 100% for in situ measurements.

4. Conclusions

In this pilot study, we investigated the possibility of coupling Confocal Raman Mi-
croscopy and Machine Learning tools for the melanoma detection from ex vivo tissues. To
this aim, we employed a commercial Confocal Raman Microscopy to obtain Raman spectra
from micrometric sections of skin lesions deposited on common glass slides. We tested two



Eng. Proc. 2023, 51, 10 4 of 5

different Machine Learning protocols, consisting of PCA+LDA and Random Forest Classi-
fier (RFC). Both the ML protocols resulted in excellent performances with values of 10-fold
averaged accuracy, sensitivity and specificity larger than 95%. However, in order to have
further proof about the effectiveness and the robustness of the Machine Learning discussed
in this work, efforts have to be devoted to increasing the number of patients involved.
In addition, the introduction of other types of skin cancer in the statistical sample could
represent another interesting solution to test the performances of these models. Finally, the
individuation of specific spectral intervals, which is considered relevant for the process
of distinction, is a fundamental step in view of future technological implementations on
devices suitable for non-invasive and in situ diagnosis.
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