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Abstract: As commonly used materials in building and interior furniture decoration, wood materials
should be processed via the pyrolysis technique in order to improve their corrosion resistance, flame
retardancy, and dimensional stability. However, during the process of pyrolysis, temperature and
time are significant factors for avoiding internal damage. The main reason comes from the decrease
in internal structural water. Existing non-destructive evaluation methods have difficulty detecting
moisture content and delamination within wood due to its complex internal structure. In this work,
a novel image processing method is proposed to detect the delamination of wood materials. The
results show that, compared to spruce and oak, meranti is more resistant to pyrolysis and has a higher
structural stability.

Keywords: NDT; terahertz; wood; water content; delamination

1. Introduction

Wood is a naturally occurring organic material extensively utilized in construction
due to its inherent attributes, such as remarkable strength and exceptional thermal and
electrical insulation properties. However, wood possesses certain undesirable intrinsic
characteristics, including swelling, shrinking, warping, and cracking. To address these
challenges in wood processing and utilization, the concept of thermally modified wood has
emerged. This entails subjecting the wood to a meticulously controlled pyrolysis process,
involving the application of heat (>180 ◦C) in the absence of oxygen. The inspection of
pyrolysis becomes a difficult new issue.

The density of wood plays a pivotal role in determining its modulus of elasticity and
stiffness, as higher-density wood generally exhibits elevated values for these mechanical
properties [1]. In the context of the pyrolysis process, the moisture content assumes a
crucial role as a key parameter. Particularly when the moisture content hovers around 30%,
careful and gradual drying becomes imperative to avoid potential issues such as cracking,
warping, and other wood defects. Hence, it becomes essential to accurately detect and
monitor the water content and potential damage of wood at various temperatures. To solve
this problem, terahertz time-domain spectroscopy (THz-TDS) is introduced in this work
for the examination of wood materials [2,3].
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This paper presents a novel approach for detecting internal delamination. The ampli-
tude at a specific frequency is utilized to effectively characterize the water content within
the wood samples. A comparative analysis reveals that the meranti wood exhibits a greater
resistance to pyrolysis and a higher structural stability when compared to spruce and oak.

2. Materials and Methods
2.1. Materials

As shown in Figure 1, the specimens investigated in this study comprised spruce, oak,
and meranti wood. All samples possessed dimensions of 40 × 40 × 10 mm. The three
groups of wood specimens can be divided into untreated wood and thermally modified
wood at temperatures of 160 ◦C, 180 ◦C, 200 ◦C, and 220 ◦C. Prior to the pyrolysis process,
each sample was intentionally provided with manually created flat-hole defects. The depths
from these flat-bottom holes to the sample surface were set at 2.5 mm, 5 mm, and 7.5 mm,
respectively, while their diameter remained consistent at 12 mm.
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Figure 1. Specimens processed by pyrolysis.

2.2. Normalized Time-Domain Integration Method

In the THz-TDS system, when an incident wave passes through a specimen, the re-
ceived THz signals encompass multiple echoes. These echoes manifest in an integrated form
rather than discrete form, resulting in variations in the shape of THz waves. Consequently,
distinguishing between the defect and non-defect areas becomes relatively straightforward
when observing the wave shapes in simpler structural specimens. However, when dealing
with specimens characterized by complex internal structures like porous materials, analyz-
ing the signal discrepancies between the defect and non-defect areas becomes challenging.
To address this issue, the authors introduced a novel image processing technique known as
the normalized time-domain integration (NTDI) method.

As we all know, a THz wave is generated by femtosecond laser pulse and photocon-
ductive antenna, which is linearly polarized and has a broadband nature in the frequency
domain. Therefore, it is possible to find that the THz wave in the time-domain is not a
standard Gaussian pulse. In general, it is always a negative value in time-domain integra-
tion. This means that if there are more THz echoes generated by defects, the value of the
time-domain integration is smaller. Based on this phenomenon, the internal structure of
specimens can be detected precisely.

3. Results and Discussion
3.1. Water Distribution Evaluation

The water distribution of meranti samples at different pyrolysis temperature is shown
in Figure 2. For different signals, the lighter the color, the higher the amplitude value, and
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the lower the water content. It is obvious that the color of wood becomes lighter and lighter,
which means the water content becomes lower and lower with the increase in the pyrolysis
temperature. In addition, there is an area with low water content on the lower right side,
which will be discussed in the next section.
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3.2. Delamination Detecion

Figure 3 shows the delamination detection results for the three types of wood. It
is obvious that the meranti has the best resistance to pyrolysis. This is due to the fact
that there is no dark area in the NTDI images for the meranti specimens. In particular,
for the raw image in Figure 3d,f, there are obvious areas of color differences. They can
be considered defective areas through experience. However, this was proven wrong by
observing the NTDI images. In fact, the abnormal area is caused by the water content
instead of delamination, which is discussed in the previous section.



Eng. Proc. 2023, 51, 37 4 of 5
Eng. Proc. 2023, 51, 37  4 of 5 
 

 

 
Figure 3. Delamination detection based on NTDI method: (a,b) are spruce and oak specimens at 220 
°C; (c,d) are meranti specimens at 200 °C; (e,f) are meranti specimens at 220 °C. The dotted box 
denotes the difference between the raw image and NTDI image for the same specimen. 

4. Conclusions 
In this study, the authors successfully achieved two objectives involving terahertz 

time-domain spectroscopy (THz-TDS) and wood materials. The first objective involved 
the characterization of the water content and its distribution using amplitude images. The 
second objective focused on detecting the delamination in materials possessing intricate 
internal structures. To address this challenge, the authors introduced a novel algorithm 
called the normalized time-domain integration (NTDI) method. All wood samples were 
evaluated using this method, which demonstrated remarkable accuracy and robustness 
in detecting delamination. Notably, an anomalous area detected in the meranti sample at 
a pyrolysis temperature of 200 and 220 °C was determined to not be associated with de-
lamination, but was rather linked to the water content. The study further verified the effi-
cacy and precision of the NTDI method in this context. 

Author Contributions: Data curation, P.Z.; investigation, P.Z., H.Z., E.P. and S.S.; writing—original 
draft preparation, P.Z.; writing—review and editing, H.Z., E.P. and S.S.; resources, E.P. and S.S.; 
supervision, H.Z. and X.M. All authors have read and agreed to the published version of the man-
uscript. 

Funding: This research was funded by the Natural Sciences and Engineering Research Council 
(NSERC) Canada through the Discovery and CREATE ‘oN DuTy!’ program, as well as the Canada 
Research Chair in Multipolar Infrared Vision (MiViM). This research was also supported by the 
National Key Laboratory of Science and Technology on Advanced Composites in Special Environ-
ments through Open-end Research Fund program (no. 6142905213301). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Todoruk, T.M.; Hartley, I.D.; Reid, M.E. Moisture Content and Fiber Direction of Wood. IEEE T THz Sci. Technol. 2012, 2, 123–

130. 
2. Hu, J.; Zhang, H.; Sfarra, S.; Pivarčiová, E.; Yao, Y.; Duan, Y.; Castanedo, C.I.; Tian, G.; Maldague, X. Autonomous Dynamic 

Line-Scan Continuous-Wave Terahertz Non-Destructive Inspection System Combined with Unsupervised Exposure Fusion. 
NDT & E Int. 2022, 132, 102705. 

Figure 3. Delamination detection based on NTDI method: (a,b) are spruce and oak specimens at
220 ◦C; (c,d) are meranti specimens at 200 ◦C; (e,f) are meranti specimens at 220 ◦C. The dotted box
denotes the difference between the raw image and NTDI image for the same specimen.

4. Conclusions

In this study, the authors successfully achieved two objectives involving terahertz
time-domain spectroscopy (THz-TDS) and wood materials. The first objective involved
the characterization of the water content and its distribution using amplitude images. The
second objective focused on detecting the delamination in materials possessing intricate
internal structures. To address this challenge, the authors introduced a novel algorithm
called the normalized time-domain integration (NTDI) method. All wood samples were
evaluated using this method, which demonstrated remarkable accuracy and robustness
in detecting delamination. Notably, an anomalous area detected in the meranti sample
at a pyrolysis temperature of 200 and 220 ◦C was determined to not be associated with
delamination, but was rather linked to the water content. The study further verified the
efficacy and precision of the NTDI method in this context.
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