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Abstract: Unsteady airfoils play a pivotal role in comprehending diverse aerospace applications,
being one of those flapping propulsions. The present paper studies this topic by bringing back an old
unsteady panel method to juxtapose its results against CFD data previously obtained. The central
objective is to revive the interest in these reduced order models in the topic of unsteady airfoils, which
can be extended to model highly nonlinear effects while keeping computational resources fairly low.
The findings reveal that while the potential flow-based UPM (Unsteady Panel Method) struggles to
accurately capture the airfoil’s propulsive power, it remains adept at estimating consumed power.
Moreover, an investigation into the pressure coefficient shows the potential benefits of UPM in
contexts where flow separation can be disregarded. Despite inherent limitations, these simplified
methodologies offer an effective preliminary estimation of flapping airfoil propulsive capabilities.

Keywords: flapping airfoil; movable leading edge; potential flow; propulsive performance

1. Introduction

Studying flapping airfoils provides a much-needed understanding regarding sev-
eral challenges and technologies, for instance, natural and unconventional flight and the
dynamics of micro and nano air vehicles.

When looking at the lower spectrum of the Reynolds number, flapping airfoils becomes
an attractive solution regarding propulsion. Early work [1,2] has suggested that an unsteady
airfoil creates an effective angle of attack which could lead to the resultant force being
decomposed into lift and thrust. This was later updated by looking at the airfoil’s wake [3],
which, based on the vortices rotation and position, would denounce if the airfoil was in a
drag or thrust regime.

Years later, the problem was first addressed analytically by Theodorsen [4] who pre-
dicted unsteady aerodynamics of pitching and plunging airfoils, although with some clear
limitations. A year later, Garrick [5] extended Theodorsen’s formulation study of an airfoil
or an airfoil–aileron configuration flapping with three degrees of freedom. The problem
was then studied numerically by employing an unsteady panel code [6] and its results were
compared with experimental data. Its results showed that the panel code could predict
the formulation and evolution of the thrust wake structures, and concluded that these are
governed by essentially inviscid phenomena. While these models can provide a good pre-
diction of the aerodynamic behavior of unsteady airfoils, they present severe weaknesses
regarding flow separation at the leading edge which the airfoil experiences at higher angles
of attack [7]. Nevertheless, it can still provide an approximate estimate of the trailing-edge
vortex formation and its convention, which is an overall inviscid phenomenon.
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Combining these limitations with the emergence of CFD and the availability of compu-
tational power, these methods have become out of use. However, these simpler techniques
and reduced-order models can still provide an efficient way to obtain an overall comprehen-
sion of the problem. Furthermore, these could be enhanced by modeling highly nonlinear
effects such as dynamic stall. Hence, this work has the objective of reviving interest in
unsteady panel methods (UPMs) and comparing its results with CFD computations at low
Reynolds numbers where the profound dynamic stall is present.

2. Methodology

The present study focuses on the propulsive capabilities of flapping airfoils estimated
via a panel method using potential flow, in particular, the performance of the NACA0012-
IK30 airfoil proposed by us [8]. The results are contrasted against high-fidelity CFD
simulations conducted using Ansys© Fluent 2022 R1. These simulations used a RANS
(Reynolds-Averaged Navier–Stokes) approach, referring to the SST k − ω turbulence model
coupled with the intermittency transition model. For further details, regarding other
numerical methods, model validation, and specific CFD results which will be used here,
we refer you to our previous work [9].

The current methodology that governs the panel method is based on the extension of
the Hess-Smith Panel Method (HSPM) to unsteady flows used by Teng [10]. The extension
of the Hess-Smith Panel Method, as in the steady case formulation, assumes that the airfoil
surface is discretized into several panels and is represented by singularity distributions of
source strength qj at each panel (j = 1, 2, . . . , N) and a vorticity τ over the airfoil surface,
varying both in time. Hence, the subscript k is used to indicate the current time-step tk
(k = 1, 2, . . . ), at which the singularity distribution of the source strength is (qj)k and
vorticity is τk.

In unsteady flows, according to Helmholtz and Kelvin’s circulation theorems, the total
circulation in the flowfield must remain constant. This means that when there is a change
in circulation Γ on the airfoil surface, there must be an equal and opposite change in the
wake vorticity, which can be obtained as a vortex-shedding process at the trailing edge of
the airfoil.

So, at each time step, to model such a vortex shedding process, an additional panel
with length ∆k and inclination to the x-axis Θk is attached to the trailing edge with a
uniform vorticity distribution (τw)k, as shown in Figure 1.

V∞

∆k

Θk

y/c

x/c

Figure 1. Unsteady potential flow formulation (airfoil-fixed frame).

With this extra panel at the trailing edge, to verify the Helmholtz and Kelvin theorems,
Equation (1) should be applied.

Γk + ∆k(τw)k = Γk−1, (1)

which may be written as

∆k(τw)k = Γk−1 − Γk = ℓ(τk−1 − τk), (2)

where ℓ is the airfoil perimeter.
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Regarding the length and orientation of the extra panel, the assumptions of Basu and
Hancock [11] are used. These hypotheses make the following statements:

• The additional vorticity panel has the direction of the local resultant velocity at the
panel midpoint.

tan Θk =
(vw)k
(uw)k

. (3)

• The length of the additional panel depends on the results’ velocity at the panel mid-
point and the size of the timestep.

∆k = (tk − tk−1)
√
(uw)2

k + (vw)2
k . (4)

After finding the trailing edge panel characteristics, it is shed to the wake and con-
vected as a concentrated free vortex by the flowfield with circulation ∆k(τw)k.

In addition to the conservation of the flow field circulation, one should also impose
the boundary condition where there is no permeability at the wall. Thus,

[(Vn)i]k = 0 i = 1, 2, . . . , N (5)

Moreover, there is the need to impose the Kutta condition, but, unlike the steady case,
the rate of change of potential at the trailing edge should now be included, which is linked
to the total circulation rate of change.

[
(Vt)1

]2
k −

[
(Vt)N

]2
k = 2

[
∂(ϕN − ϕ1)

∂t

]
k
= 2

(
∂Γ
∂t

)
k

(6)

where a backward finite difference is used to approximate the rate of change of total
circulation as [

(Vt)1
]2

k −
[
(Vt)N

]2
k = 2

Γk − Γk−1
tk − tk−1

= 2ℓ
τk − τk−1
tk − tk−1

(7)

The numerical solution of this panel method is composed of three main stages. The first
concerns the calculation of influence coefficients which hold information on how each fluid
element influences all others, with some being time-dependent. The second phase passes by
employing the flow tangency solution and forcing the Kutta condition iteratively. The third
and last step regard the determination of the pressure distribution and force calculations.
For the specifics of the mathematical formulation, we refer you to the work of Teng [10].

As mentioned before, the central element in the study is the NACA0012-IK30 airfoil.
As illustrated in Figure 2, this airfoil is a modification of the conventional NACA0012,
where it has been segmented into two parts (β and ψ) with a pivot at 30% of the chord.

y, ẏ

x

c β

cψ

+

β, β̇

U

c

Figure 2. Scheme of NACA0012-IK30 airfoil.

For the present study, the airfoil kinematics are governed by{
y = A cos(2π f t)

β = Aβ cos(2π f t + π/2)
, (8)
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where A, Aα, and f are the plunging amplitude, leading-edge pitching amplitude, and fre-
quency, respectively. Based on kinematics and geometric parameters, the angle of attack
and effective angle of attack are calculated as

α = arctan

(
cβ sin β

cβ cos β + cψ

)
αeff = arctan

(
− ẏ

U

)
+ α

, (9)

where U is the freestream velocity.
To analyze the propulsive performance, two coefficients were used: the propulsive

power and mean required power coefficients. The first is defined as

CPP =
TU

0.5ρU3S
= Ct with T = Tβ + Tψ, (10)

which has the same value as the thrust coefficient. All force coefficients are obtained by
integrating the pressure coefficient in the desired directions. The pressure coefficient is
calculated by

Cp =

(
Vstream

V∞

)2
−
(

V
V∞

)2
− 2

V2
∞

∂ϕ

∂t
(11)

where Vstream is the unsteady stream velocity that is observed on a coordinate system fixed
on the airfoil, and V is the total velocity with respect to the airfoil-fixed coordinate system.

Regarding the required power coefficient, it is given by

CPR =
−ẏL − β̇Mβ

0.5ρU3S
= −

(
Cl

ẏ
U

+ (Cm)β
β̇c
U

)
with L = Lβ + Lψ, (12)

where Mβ is the pitching moment of the ψ part calculated at the pivot. The term (Cm)ψ is
not considered as no pitching is prescribed to the back part.

As observed, the proposed geometry has two discontinuities on the airfoil surface, pre-
senting a clear challenge of the panel method. Without any consideration, if we deflect the
frontal part, some control points (points separating panels) may overlap or grossly misrep-
resent our geometry. To tackle this challenge, we use an optimized sigmoid which provides
a smooth transition using 5% of the airfoil chord to create a continuous deformation, as
seen in Figure 3.

0.25 0.5 0.75 1

0.275c 0.325c

pivot

Aβ

1 + e117.7(x/c−0.3)

x/c

Aβ

Figure 3. Deformation strategy for the leading-edge deflection.

As illustrated in Figure 1, the problem is solved in the airfoil body axis. Hence, it
is worth mentioning that when dynamically deflecting the leading edge, Equation (5) is
slightly different in order to include the normal velocity of these moving panels.

3. Results and Discussion

In this section, we present a comparison between previously published data obtained
with CFD computations [9] against the ones obtained by the unsteady panel code. These
computations are carried out at a Reynolds number of 1 × 104, two nondimensional ampli-
tudes (h), 0.25 and 0.50, and two nondimensional velocities (kh), 0.50 and 1.00. For each
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of these conditions, the leading edge is deflected with three pitching amplitudes, 0◦, 10◦,
and 20◦, closely following Equation (8).

Starting with Figure 4, where the kh = 0.50 condition is shown for the two amplitudes,
we first observe that in the CFD results, deflecting the leading edge up to 10◦ provides an
increase in thrust produced, regardless of h. This has been linked to exploiting the presence
of the suction zone in the larger frontal area of the airfoil created by Aβ [9]. When looking at
the UPM results, it is clear that there is an overestimation of the thrust production, mainly
due to the lack of separated flow, as seen ahead. Furthermore, deflecting the leading edge
will lead to a slight thrust reduction which is caused by the lowering of the suction zone
located at the frontal part of the airfoil, also shown afterwards.

Aβ = 0◦ Aβ = 10◦ Aβ = 20◦

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

t/T

CPP

0.00 0.25 0.50 0.75 1.00

0.0
0.2
0.4
0.6
0.8

t/T

CPP

Figure 4. CPP as a function of t/T with kh = 0.50 for h = 0.25 (left) and h = 0.50 (right). CFD and
UPM results in black and red, respectively.

With a larger nondimensional velocity of kh = 1.00, as shown in Figure 5, the airfoil
is under extreme plunging. In fact, at this plunging velocity, its effective angle of attack
reaches 45◦, which undeniably leads to the formation of extensive regions of separated flow.
The graphs present the same conclusions as before, with real flow being favored by the
leading-edge deflection, while the inviscid solution is not. However, it is interesting to see
how deflecting the leading edge pushes the CFD results closer to the inviscid solution. This
may be because deflecting the leading edge in real flow can lead to the minimization of the
flow separation, which is a regime where potential flow truly stands out. Additionally, it is
worth mentioning that during the accelerating phases, 0.00–0.25 and 0.50–0.75, the panel
method provides a good approximation, which may denounce that this is a time window
where none or negligible separation is present.

Aβ = 0◦ Aβ = 10◦ Aβ = 20◦

0.00 0.25 0.50 0.75 1.00
0.0

1.0

2.0

t/T

CPP

0.00 0.25 0.50 0.75 1.00
0.0

1.0

2.0

t/T

CPP

Figure 5. CPP as a function of t/T with kh = 1.00 for h = 0.25 (left) and h = 0.50 (right). CFD and
UPM results in black and red, respectively.

Moving to Figure 6, we now present the required power coefficient for kh = 0.50 and
both amplitudes. Contrarily to the propulsive power, the panel code provides a very good
prediction of the consumed power for the two amplitudes. Additionally, as in the CFD
computations, deflecting the leading edge provides a slight reduction in the consumed
power due to lowering the effective angle of attack.
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Aβ = 0◦ Aβ = 10◦ Aβ = 20◦

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

t/T

CPR

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

t/T

CPR

Figure 6. CPR as a function of t/T with kh = 0.50 for h = 0.25 (left) and h = 0.50 (right). CFD and
UPM results in black and red, respectively.

With kh = 1.00, as illustrated in Figure 7, the panel code can still provide an adequate
approximation. This is a very interesting result since this is a condition where severe flow
separation is present, and still the potential flow approach can predict the lifting forces
quite accurately, and thus the consumed power.

Aβ = 0◦ Aβ = 10◦ Aβ = 20◦

0.00 0.25 0.50 0.75 1.00

0.0

5.0

t/T

CPR

0.00 0.25 0.50 0.75 1.00

0.0

5.0

t/T

CPR

Figure 7. CPR as a function of t/T with kh = 1.00 for h = 0.25 (left) and h = 0.50 (right). CFD and
UPM results in black and red, respectively.

To better grasp the propulsive coefficients presented before, Figure 8 shows the pres-
sure contours obtained using CFD and the pressure coefficients of both CFD and UPM
simulations. All data correspond only to the larger amplitude (h = 0.50) and kh = 0.50 at
t/T = 0.75, which is when the airfoil is halfway down, presenting its maximum plunging
velocity and leading edge deflection.

As expected, the panel method presents an extremely high suction peak at the leading
edge, which cannot be sustained in real flow. This is confirmed by the presence of a
leading-edge vortex in the CFD results. Additionally, it is also seen that a low-pressure
zone is present at the back part, where CFD shows a bump in the pressure coefficient.
Interestingly enough, the panel code also has this Cp prominence, although for a much
different reason. Due to the leading-edge deflection, the whole airfoil presents what may
be considered a dynamic curvature, being maximum at the pivot point (0.3c). With this
curvature, a low-pressure zone is needed around the pivot to guarantee that the air remains
attached to the surface. This is the reason why the UPM presents this Cp bump and not
because of highly nonlinear effects such as vortex shedding. It is also worth mentioning
that as the leading-edge pitching amplitude increases, the UPM starts offering a better
aerodynamic representation of the pressure distribution, especially at the frontal part. This
may be attributed to the absence of extreme flow separation.
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Aβ = 0.00◦ Aβ = 10.0◦ Aβ = 20.0◦

0.0 0.5 1.0

−6.0

−4.0

−2.0

0.0

x/c

Cp

0.0 0.5 1.0

−6.0

−4.0

−2.0

0.0

x/c

Cp

0.0 0.5 1.0

−6.0

−4.0

−2.0

0.0

x/c

Cp

Figure 8. CFD pressure contour and pressure coefficient for h = 0.50 and kh = 0.50 at t/T = 0.75.
CFD and UPM results in black and red, respectively.

Similar effects are seen in Figure 9, where the nondimensional velocity has been
increased to 1.00. The results show the same limitations that arise from a potential flow ap-
proach, but some regions of the airfoil, for instance, the lower surface, are well represented
by the UPM solution.

Aβ = 0.00◦ Aβ = 10.0◦ Aβ = 20.0◦

0.0 0.5 1.0

−15.0

−10.0

−5.0

0.0

x/c

Cp

0.0 0.5 1.0

−15.0

−10.0

−5.0

0.0

x/c

Cp

0.0 0.5 1.0

−15.0

−10.0

−5.0

0.0

x/c

Cp

Figure 9. CFD pressure contour and pressure coefficient for h = 0.50 and kh = 1.00 at t/T = 0.75.
CFD and UPM results in black and red, respectively.

4. Conclusions

Unsteady airfoils are studied as a means to understand several aerospace applications.
At lower velocity and length scales, their propulsive potential becomes undeniable. How-
ever, studying numerically using CFD is quite complex, typically requiring a higher level
of computing power, which makes reduced-order models very attractive.

The present paper reintroduced an unsteady panel method and its results were com-
pared with pressure fields obtained in CFD simulations. The results indicated that the
propulsive power of the airfoil cannot be accurately modeled with potential flow due to
the limitless suction peak created by the UPM. However, when it comes to the consumed
power, the panel method provides a good first estimate. The pressure coefficient was also
analyzed at two different cycle stages, where we saw that the UPM approach could be
beneficial in conditions where flow separation could be neglected.

Although with several limitations, these simpler methods provide an efficient way to
obtain a first estimate of the propulsive capabilities of flapping airfoils. Future work will
be focused on extending the UPM by modeling some level of vortex shedding mechanism
which could improve the estimation of thrust generation.
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