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Abstract: Multi-component silica calcium phosphate glasses doped with modifiers of alkaline and
transition metal oxides of Mg2+, Fe3+, and Bi3+ were synthesized using the sol-gel method. The glasses
were analyzed for structural behavior via XRD analysis. While alkaline metal-doped glasses were
purely amorphous, the transition metal oxides induced fractional crystallinity in the material, with
bismuth evidencing a high glass–ceramic attribute. FT-IR analysis confirmed the presence of silicate
and phosphate linkages in the glass material via the vibration modes around 790 cm−1 and 450 cm−1,
respectively. The peaks also represented the bridging and non-bridging oxygens of the glass formers.
The UV-visible absorption spectra of the alkaline metal-infused glasses demonstrated the absence of
sharp absorption peaks, while the transition metal-doped glasses evidenced prominent UV absorption.
Tauc’s plots of the absorption spectra were employed to predict the band gap energies. While the
Fe3+-doped glass exhibited the lowest band gap energy of 2.6 eV approaching a semiconducting
nature, the remaining glasses exhibited an insulating behavior with a value of around 4 eV. The high
UV absorption and lower bandgap indicate the suitability of the iron-doped glass for photovoltaic
devices. Green and red emissions from all the glasses were observed using photoluminescence
analysis. While the emission indicates the nature of the glass host, the intensity of its luminescence
was altered by the influence of modifiers. Multi-component silicate glasses underscore the efficiency
of the modifiers that could be suitably tailored for influencing the laser activity.

Keywords: multi-component glasses; modifier oxides; Tauc’s plots; photoluminescence; lasers

1. Introduction

Optically active glasses have been found in a wide range of applications, from lasers
to LEDs andto optical amplifiers [1]. While silica, telluride, fluoride, and germanate glasses
have been widely reported, the addition of phosphate is also preferred due to their high
luminescence and transparency. However, phosphate glasses have exhibited poor chemical
stability, which demands the addition of modifiers in the glass material [2]. The structure
and optical activity of the glasses could be enhanced by the addition of modifier oxides such
as alkali, alkaline earth metals, and transition metals [3]. A significant enhancement in the
Mg2+- and Bi3+-doped glasses has been observed related to the luminescent behavior [4,5].
It has been reported that Fe doping in glasses has greatly reduced the band gap energy,
approaching a semiconducting nature [3].

The present study is intended to synthesize the silica calcium phosphate glasses doped
with the alkaline earth metal and transition metal modifier oxides of Ca2+, Mg2+, Fe3+, and
Bi3+. The behavior of the modifiers relating to the structural and optical influence on the
glass properties are compared. Emissions from the glasses are analyzed to understand the
laser action.
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2. Materials and Methods

The silica calcium phosphate glasses doped with modifier oxides from the alkaline
metal groups of calcium and magnesium and that from the transition metals of iron and
bismuth were synthesized using the sol-gel method as per the scheme reported [6]. The
glasses are, respectively, coded as SPCM, SPCF, and SPCB. The precursors were stirred for
two hours at room temperature, followed by gelation and formation of solid glasses.

The glasses were taken for structural analysis via X-ray diffraction using an X-ray
Diffractometer (Bruker λ = 1.5418Å). The functional groups present in the glasses were
verified using Fourier Transform Infrared (FT-IR) analysis employing a Shimadzu FTIR—
8400S. The optical properties were examined by the Shimadzu—UV 3600Plus UV-visible
spectrophotometer in the visible range, while photoluminescence studies were carried out
with a Horiba Fluoromax-PLUS spectrofluorometer at room temperature of 300 K.

3. Results and Discussion
3.1. X-ray Diffraction (XRD) Studies

The XRD spectra of the samples are shown in Figure 1. The Mg2+-doped sample
exhibited an amorphous nature without the formation of crystalline phases [7]. Large
crystallinity was observed in the Bi3+-doped glass with the bismuth silicate and SiO2
phases [8,9]. The Fe3+-doped glass also has fewer peaks related to the SiO2 phase. This
proves that the bismuth- and iron-doped glasses have a larger ceramic attribute, producing
physical stability to the glasses.
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Figure 1. XRD pattern of the glasses.

3.2. FT-IR Studies

The FT-IR spectrum of the undoped silica phosphate glass is shown in Figure 2. The
doped samples also exhibited similar spectra without showing the vibrations of the modifier
oxides. This is due to the low proportions of the modifiers added as a dopant in the glass.
The band at 3548 cm−1 is due to the vibrations of the hydroxyl groups. The peaks at
1632 cm−1 and 1336 cm−1 are due to the bending motions of the remanent water molecules
in the glass [10]. The bands at 1108 cm−1 and 799 cm−1 are due to the asymmetric and
symmetric stretching of the phosphate groups, respectively. The existence of silicate groups
is confirmed by the bending motion at 450 cm−1 [11].
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Figure 2. FT-IR graph of pure silica calcium phosphate glass (Variation of transmittance from low to
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3.3. Optical Studies

The absorption spectra of the samples are shown in Figure 3.
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Figure 3. UV-visible absorption spectra.

The glass SPCF shows broad absorption between 200 and 400 nm in the UV region
while transmitting light in the visible region. The glass SPCB has minimal absorption
in the UV region and provides complete transparency in the visible region [12,13]. The
Mg2+-doped glass, however, shows smaller absorptions at 250 nm, 480 nm, and 520 nm in
the visible region.

Tauc’s plots shown in Figure 4 were used to obtain the band gap energies. The band
gap and the related optical parameters were evaluated using the expressions reported [12].
The values of the band gap energy and the optical parameters of SPCM, SPCF, and SPCB
are tabulated in Table 1, which agree with the reported values [12,14,15]. This shows that
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the iron-doped glass approaches a semiconducting nature, while the rest of the glasses
exhibit perfect insulating properties.
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Table 1. Optical parameters.

Parameters/Sample Code SPCM SPCF SPCB

Band gap energy (eV) 3.910 2.610 4.160
Refractive index 2.187 2.510 2.139

Dielectric constant 4.783 6.300 4.575
Reflection loss 0.139 0.185 0.132

3.4. Photoluminescence Studies

The emission spectra of the modifier oxide-doped silica phosphate glasses obtained at
an excitation wavelength of 350 nm are shown in Figure 5. All the glasses demonstrated
blue emissions around 410 nm, 434 nm, 450 nm, and 470 nm [13]. A prominent yellow
emission at 570 nm was observed, along with a relatively low intensity of red emission
at 617 nm [16]. A bluish-green emission could be observed at 490 nm in SPCM and SPCF,
while it is evident at 505 nm in SPCB. The intensities of emissions in SPCM and SPCF
are high, while that in SPCB is relatively low. This would prove the emissive behavior
of the silica calcium phosphate glass host, which is more suitable for blue and yellow
laser applications. However, the luminescence could be favorably tailored by the modifier
oxides. The material could also be considered for doping with rare earth ions to enhance
the luminescent behavior with and the glass formers.
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4. Conclusions

The silica phosphate glasses were doped using modifier oxides of Mg2+, Fe3+, and Bi3+

along with Ca2+ and synthesized using the sol-gel method. The XRD analysis confirmed
the glass–ceramic nature when modified with bismuth, while a pure amorphous nature
was observed in the magnesium-doped glass. The FT-IR analysis confirmed the existence
of silica and phosphate groups in the glass material. Tauc’s plots with a narrow band gap
of 2.6 eV identified a near semiconducting nature for the iron-doped system while retaining
an insulating trend in the bismuth- and magnesium-doped glasses. The low bandgap with
higher dielectric constant, as well as enhanced UV absorption, indicate the potentiality of
the Fe-doped glass for photovoltaic devices. The silica calcium phosphate glass matrix was
found to be suitable for blue and yellow emissions, which could be tuned suitably for laser
action by optimizing the modifier oxides and doping with rare earth ions.
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