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Abstract: Advanced composite cementitious materials with multifunctional properties can be created
by incorporating fillers and inclusions via appropriate production, characterization, and assembly
processes. These composites have unique characteristics tailored for specific applications. Particularly,
cementitious composites with conductive particles possess enhanced electrical and mechanical
capabilities. They can assess structural integrity, being able to monitor stress, strain, and load
variations, detecting incipient hazardous conditions throughout building lifespans. This improves
maintenance, renovations, and structural modifications, ensuring safer and longer-lasting facilities.
This paper presents experimental results of cement-based materials with carbon microfibers for
structural beam elements. The samples self-diagnose internal non-uniformities, defects, fractures,
and evaluate deformation variations.

Keywords: carbon-based fillers; smart composites; structural health monitoring; sustainable compos-
ites; advanced materials; carbon microfibers; fiber-reinforced concrete; smart monitoring; multifunc-
tional building materials

1. Introduction

Structural concrete is the most widely used construction material for building struc-
tures and infrastructure in civil engineering. The need to limit its environmental impact
while retaining its advantages in terms of its ease of execution and versatility has led
to the development of multifunctional cementitious materials. This work explores the
advanced topic of novel concrete with enhanced properties. In particular, it investigates
concrete elements created by adding carbon microfibers, which provide self-monitoring
capabilities. The idea is to construct structures that are not only resistant but also capable
of monitoring their own performance, assessing their deformation status, and identifying
any critical conditions, loss of strength, critical loads, or incipient crack formations. This
study has highlighted the material’s sensitivity at a medium scale, necessary for further
real-world technology development. Through compressive load tests and electrical mea-
surements, the concrete supplemented with carbon microfibers has demonstrated sufficient
self-monitoring properties for potential applications in the construction industry. With
respect to available works in the literature, which focus essentially on cement paste or
mortar samples investigating physical and mechanical properties at small-size dimensions,
this paper is aimed at investigating the feasibility of applications in real structural elements,
where the presence of coarse aggregates could affect the smart capabilities of the material.
Results on both electrical and electromechanical experimentations have paved the way to
the possible realization of concrete structures able to characterize the evolution of strain
fields, and the formation and propagation of damages and crack paths.
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2. The State of the Art

In recent years, concrete technology has seen significant advancements thanks to
progress in the fields of chemistry and the science of materials. The availability of innova-
tive fillers suitable for incorporation into cementitious matrices has opened up possibilities
for enhancing the mechanical properties and durability of construction materials [1]. Par-
ticularly promising are carbon-based particles and fillers, which have gained attention
for various engineering applications. In both the market and the literature, a variety of
carbon fillers with nanometric or micrometric dimensions are readily available [2], all
composed of carbon atoms. Examples of these carbon inclusions include carbon nano-
and microfibers, carbon nanotubes, graphene, carbon black, and graphite, which find
widespread use in civil engineering applications [3–5]. Research efforts in the literature
typically focus on investigating the mechanical strength and multifunctional capabilities
of cementitious materials infused with carbon fillers. These conductive fillers exhibit im-
pressive mechanical and electrical properties, making them well-suited for self-sensing
applications in Structural Health Monitoring (SHM) [6,7]. Smart cementitious materials
containing carbon inclusions have the unique ability to monitor their own strain and stress
states: this allows construction materials used in building structures and infrastructures
to serve as sensors, providing insights into their performance and integrity [8–10]. They
can even detect early signs of damage such as cracks or structural changes resulting from
exceptional events or variations in usage [11,12]. The existing literature predominantly
focuses on cement-based matrices, including cement pastes and mortars, and small-scale
samples [13,14]. However, the behavior of concrete smart composites and larger-scale
elements remains an underexplored area. This paper sets out to investigate the feasibility
of producing full-scale structural elements using self-sensing concrete for practical appli-
cations. Scaling up this technology presents challenges, including ensuring proper filler
dispersion to achieve material uniformity, addressing the potential adverse effects of coarse
aggregates on strain sensitivity, and optimizing the selection and placement of electrodes
in larger structures [15,16]. The authors have conducted various research endeavors aimed
at enhancing the self-monitoring capabilities of cement matrix materials [17,18]. In this
paper, they extend their focus to self-sensing concrete elements. The paper begins by
describing the custom-designed smart concrete materials and methods and presenting
the results of the experimental tests, encompassing both electrical and load sensing eval-
uations. Subsequently, the paper meticulously reports and discusses the findings from
these experiments.

3. Materials and Methods

The samples investigated in this paper are medium-scale concrete beams with carbon
micro fibers (CMFs), equipped with copper wires with a diameter of 0.8 mm placed
in diffuse points, to monitor different configurations according to various applications
(Figure 1b). In particular, the first configuration is obtained through the embedding of
12 electrodes placed in three lines, adopted for resistance mapping, while the second
configuration consisted of 8 electrodes aligned in the center of the sample, also used for
sensing tests (Figure 2a).
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3.1. Components and Devices 
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Scotland, UK, type SIGRAFIL®. The fillers were added in the percentage of 0.05% with 
respect to the weight of the cement. The water-to-cement ratio adopted for all the mixes 
was 1:2. Such a mixing design was determined by the authors according to previous re-
search investigations [17,18]. 

3.1.2. Samples and Setup 
A function generator RIGOL DG1022, from RIGOL Technologies in Cinisello Bal-

samo, Milano, Italy, powered the samples with a 20 V peak-to-peak voltage square wave, 
using a frequency of 1 Hz and a duty cycle of 50%. Voltage measurements were performed 
at every couple of electrodes, with a sampling rate of 10 Hz, by using a multichannel an-
alog input module, model NI PXIe-4302, housed inside a chassis, NI PXIe-1073, both from 
National Instrument Italy SRL, Assago, Milano, Italy. The electrical resistance of each sec-
tion of the tested samples between a pair of electrodes, R(t), was obtained from the first 
Ohm’s law (Figure 1a): 

R(t) = V/I (t) (1)

where V is the voltage drop measured at a couple of electrodes, sampled at 80% of the 
positive signal output, and I is the electrical current within the circuit, computed by con-
sidering the voltage drop at the reference resistor placed in line with the tested sample. 
The so obtained electrical resistance values were interpolated to obtain electrical re-
sistance maps for the detection and location of defects, imperfections, voids, or cracks 
within the samples. The Ordinary Kriging (OK) interpolator was used to process the elec-
trical data [19]. Load tests were performed recording the voltage drops in the subsequent 
sections of the samples, as well as at the reference resistor of 1 kΩ placed in series (Figure 
1b). 

Figure 1. Experimental setup: (a) Electrical tests. (b) Detail of a sample during the electrical tests.
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Figure 2. Samples with aligned electrodes: (a) after the curing period; (b) equipped during load tests.

3.1. Components and Devices
3.1.1. Raw Materials

Smart concrete was obtained by mixing Portland cement type 42.5 R, fine and coarse
quarry aggregates, with 6 mm chopped CMFs provided by SGL Carbon, Muir of Ord,
Scotland, UK, type SIGRAFIL®. The fillers were added in the percentage of 0.05% with
respect to the weight of the cement. The water-to-cement ratio adopted for all the mixes was
1:2. Such a mixing design was determined by the authors according to previous research
investigations [17,18].

3.1.2. Samples and Setup

A function generator RIGOL DG1022, from RIGOL Technologies in Cinisello Balsamo,
Milano, Italy, powered the samples with a 20 V peak-to-peak voltage square wave, using a
frequency of 1 Hz and a duty cycle of 50%. Voltage measurements were performed at every
couple of electrodes, with a sampling rate of 10 Hz, by using a multichannel analog input
module, model NI PXIe-4302, housed inside a chassis, NI PXIe-1073, both from National
Instrument Italy SRL, Assago, Milano, Italy. The electrical resistance of each section of the
tested samples between a pair of electrodes, R(t), was obtained from the first Ohm’s law
(Figure 1a):

R(t) = V/I (t) (1)

where V is the voltage drop measured at a couple of electrodes, sampled at 80% of the
positive signal output, and I is the electrical current within the circuit, computed by
considering the voltage drop at the reference resistor placed in line with the tested sample.
The so obtained electrical resistance values were interpolated to obtain electrical resistance
maps for the detection and location of defects, imperfections, voids, or cracks within
the samples. The Ordinary Kriging (OK) interpolator was used to process the electrical
data [19]. Load tests were performed recording the voltage drops in the subsequent sections
of the samples, as well as at the reference resistor of 1 kΩ placed in series (Figure 1b).

External loads were step-constant forces of 7 kN (Figure 3) applied through a hydraulic
press, with a maximum load capacity of 20 tons (Figure 2b).
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3.2. Tests

The tests carried out on the samples were designed to investigate the monitoring
capabilities of different electrical setups on elements made of smart structural materials.
The first ones were aimed at identifying the resistance of local segments and the presence
of inhomogeneities that could affect their peculiar electrical conductivity. The second type
of experimental test analyzed the sensing capabilities of different sections of the elements.

4. Results
4.1. Resistance Mapping

Figure 4a represents the resistance obtained on the samples with aligned electrodes by
measuring simultaneously on all of the segments the voltage drops under the given voltage
input. Clearly, the end segments show high variability due to the effect of the contact
resistance. The map generated by all the segments (Figure 4b) identifies a greater conduc-
tivity in the center of the sample, probably due to the higher level of compaction occurred
during the preparation, which corresponds to a minor presence of voids and imperfections.
Electrical mapping on the sample with distributed electrodes is also investigated to explore
the variability in the consistency of internal composite material (Figure 5). It should be
noted, however, that the analysis of the bidimensional problem would be necessary to
formulate an appropriate conduction model (e.g., a bidimensional mesh of resistors), and
this is left for future work. The aim, in this case, is to preliminarily verify the possibility of
carrying out distributed measurements and checking to some extent the homogeneity of
the material.
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The variations observable in the electrical resistance in Figure 5 could also be caused by
the concentration of conductive fillers in specific areas of the sample, or the imperfections
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that could occur near the electrodes due to the concrete shrinkage during the curing
period. Moreover, Figure 5a,b demonstrate the differences that could occur through various
electrical setups: in this case, between the measurements achieved through the central
electrodes, or through all of the segments considered in series. This configuration permits
us to obtain an evaluation of the internal distribution of the electrical resistance, which can
be used to assess the internal homogeneity of the composite.

4.2. Sensing Tests

Figure 6 reports the time histories of the electrical resistances obtained on different
sections of the samples with aligned electrodes. The graphs of Figure 6a–c were obtained
during compressive step loads on the sample with aligned electrodes, positioned vertically,
through the electrical measurements taken at the segments located in the upper, central,
and bottom zones, respectively. The variation in the internal material, contact resistance,
and local peculiarities provided differences in the output although the applied load was
the same and centered. In all of the segments, a certain sensitivity is observable with a
decrease in the electrical resistance under applied compression load. However, the noise is
significant, and after removing the load, the sample exhibits smaller values of electrical
resistance compared to the initial part of the test. Both aspects deserve further study, which
would go beyond the purposes of this preliminary investigation.
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5. Conclusions

The present paper aimed towards investigating the potential sensing properties of
concrete elements doped with conductive and piezoresistive carbon microfibers able to
monitor their state of strain and stress and their integrity, for potential SHM applications to
real-scale structures. The scaling from small samples made of cement paste, the investiga-
tion of which is quite diffuse in the literature, to concrete elements needs the evaluation of
key points, such as the influence of aggregates, the local effects, and the multiple electrodes
setup. The preliminary results shown in this paper demonstrate the feasibility of the devel-
opment of sensing concrete composites for the monitoring of the integrity and the internal
properties of complex structural elements.
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