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Abstract: Band selection is a frequently used dimension reduction technique for hyperspectral
images (HSI) to address the “curse of dimensionality” phenomenon in machine learning (ML). This
technique identifies and selects a subset of the most important bands from the original ones to
remove redundancy and noisy information while maintaining optimal generalization ability. Band
selection methods can be categorized into supervised and unsupervised techniques depending on
whether labels are used or not. An unsupervised band selection and feature extraction framework is
proposed in this study. The framework trains a sub-neural network to identify the most important
and informative bands from the original data space, which is then projected to a reduced and more
informative space. The classification performance of the selected bands’ combination on the Pavia
University HSI datasets has been verified using multiple machine learning algorithms. The proposed
method not only enhances the classification results of HSI, but also reduces the computational time
and data storage requirements compared to other state-of-the-art band selection approaches.

Keywords: hyperspectral images; unsupervised band selection; machine learning; deep learning;
autoencoders; classification

1. Introduction

High-dimensional datasets are common in various fields, such as image processing,
genomics, finance, and more. These datasets have a wide range of features (attributes) and
often surpass the number of samples available for analysis. This wealth of information
is valuable, but it also presents numerous challenges, collectively known as the “curse of
dimensionality”. The latter involves issues such as increased computational complexity,
overfitting, degraded model performance, and reduced interpretability. These challenges
hinder the effectiveness of traditional data analysis methods [1].

Feature selection is a technique that identifies a subset of relevant features from a
high-dimensional dataset. There are three main types of feature selection methods: filter
methods, wrapper methods, and embedded methods. Filter methods assess feature im-
portance independently of any specific learning algorithm, while wrapper methods use
a specific learning algorithm to evaluate the impact of feature subsets on model perfor-
mance [2]. Embedded methods combine feature selection seamlessly with the learning
process itself. The choice of feature selection method depends on the specific applica-
tion and the available resources. These methods cover a wide range of feature selection
techniques, including Principal Feature Analysis (PFA) [3], which prioritizes key features
through statistical measures; Multi-cluster Feature Selection (MCFS) [4], which leverages
clustering techniques; Unsupervised Discriminative Feature Selection (UDFS), which seeks
to maximize feature discrimination; and Principal Component Analysis (PCA), which
focuses on orthogonal transformations. However, a significant challenge arises when the

Eng. Proc. 2023, 56, 304. https://doi.org/10.3390/ASEC2023-15879 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ASEC2023-15879
https://doi.org/10.3390/ASEC2023-15879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-6220-5621
https://asec2023.sciforum.net/
https://doi.org/10.3390/ASEC2023-15879
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ASEC2023-15879?type=check_update&version=1


Eng. Proc. 2023, 56, 304 2 of 6

selected features exhibit high correlations. This can potentially lead to the representation of
only partial information and limit the global representativeness of the feature subset.

Multispectral imagery (MSI) captures a limited range of electromagnetic radiation in
a few wide spectral bands. For some real-world applications, MSI can provide adequate
information for the task. However, compared to other advanced satellite imagery, it offers
less detailed data. In contrast, hyperspectral imagery (HSI) captures a broad range of
electromagnetic radiation in hundreds of narrow bands, providing rich information about
scene materials. This makes HSI ideal for applications like material identification, target
detection, and environmental monitoring. However, HSI can be expensive and difficult
to process. In HSI, feature or band selection and data compression are key techniques for
managing large data volumes, improving analysis efficiency, and simplifying storage and
transmission. This enables more effective HSI applications in areas like agriculture, mineral
exploration, and environmental monitoring [5].

Deep learning-based feature selection methods, such as autoencoders (AE), use neural
networks to automatically identify and extract the most important features from complex
datasets. AE are a type of neural network that can learn compact representations of input
data. This makes them well-suited for both feature selection and data compression tasks.
By learning compact representations of input data, AE can enhance data analysis efficiency
and preserve vital information across diverse domains [6].

A new framework of feature selection for HSI based on Fractal AE (FAE) [7] is intro-
duced in this paper. FAE seeks to achieve optimal feature subsets that effectively balance
the representation of information and diversity, which can enhance the performance of
subsequent data analysis tasks. In the following sections, the details of FAE are delved into,
its unique characteristics are showcased, and its effectiveness is demonstrated through
experiments and comparisons with state-of-the-art methods.

This work is organized as follows: In Section 1, a detailed presentation of the archi-
tecture and formulation of AE and FAE is provided. Following that, in Section 2, our
methodology for utilizing these techniques is elucidated, and our comparative analysis
against several other methods is discussed.

2. Methodology

This section introduces an approach tailored for HSI analysis based on the concept of
FAE. While building on the foundation of AE, the approach customizes the architecture to
address the specific challenges of HSI data. Figure 1 shows the architecture of FAE, which
forms the core component of this method. The design of the architecture aims to enable
effective feature selection for HSI. In the following sections, an in-depth explanation of the
architecture and its constituent parts is provided.

2.1. Formalization of AE

For HSI, we formalize the AE as follows:

min ∥X − f (g(X))∥2
F

Here, the encoder is represented by g, and the decoder is represented by f . The
function g(X) transforms the input HSI data X into a latent space Rn×d, where d signifies
the dimension of the bottleneck layer within the AE. To illustrate, the application of our
approach to a HSI dataset is considered. In the context of HSI analysis, this formalization
allows the essential spectral information to be effectively captured and represented within
a reduced-dimensional latent space.
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Figure 1. The architecture of FAE. The presented quantifies are (1) feature selection result, (2) input, 
(3) reconstruction based on the selected features, (4) reconstruction from the one-to-one layer. 
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2.2. Formalization of Feature Selection

Feature selection entails the process of pinpointing a subset of informative features
within the original feature space, and it can be defined as follows:

minSk ,H ∥H(XSk )− X ∥ 2
F

Here, Sk represents the chosen subset of k features, XSk denotes the dataset derived
from X by retaining only the features in Sk, and H signifies a mapping from the space defined
by XSk to a new space, all performed without relying on any label or class information.

2.3. Formalization of FAE

FAE, a novel approach designed to tackle feature selection, introduces a concept akin
to self-similarity in its operation. The primary objective of FAE is to select a subset of k
informative features from a HSI X, such that the chosen features collectively retain as much
information about the overall spectral content of the original samples as possible.

The operation of FAE is formalized as an optimization problem with two key com-
ponents; the global reconstruction term minimizes the reconstruction error between the
original HSI data X and the data reconstructed after passing through the encoder g and
decoder f networks, considering the selected features represented by WI . The diversity
term is introduced to encourage the selected subset of features (WI) to be diverse and not
highly correlated with each other. This term ensures that the chosen features effectively
capture various aspects of the HSI.

minw,g, f ∥X − f (g(WI) ∥2
F + λ1∥X − f (g

(
Wmax k

I
)
∥2

F + λ2∥WI∥1, s.t. W1 ≥ 0

In the notation used here, a bold capital letter, for instance, W, represents a matrix,
whereas a lowercase bold capital letter, like w, signifies a vector. The notation Diag(w)
represents the creation of a diagonal matrix with its diagonal elements derived from the
vector w. The operation Wmax k is defined to retain the k largest entries of the vector w
while setting the remaining entries to zero. Furthermore, ||. ||F denotes the Frobenius norm.
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The overall objective function is balanced between these two terms, and is controlled by
non-negative balancing parameters, λ1, λ2 and Wmax k

I = Diag (wmax k). This approach is
named FAE because of its intriguing characteristic: a small proportion of features selected
in the second term can achieve performance similar to using the entire set of features in
the first term when reconstructing the original HSI. This self-similarity trait becomes even
more evident when FAE is applied to extract multiple feature subsets for different tasks.
Firstly, FAE is utilized to perform feature selection on the HSI. FAE is tailored to select
a subset of informative spectral bands from the original dataset while ensuring that the
chosen features are diverse. This process aims to enhance the representativeness of the
feature subset.

However, the innovation in FAE comes from its ‘bottleneck’ layer, which is part of
the encoder. This bottleneck layer enables dimensionality reduction by compressing the
HSI into a lower-dimensional latent space. This compression captures the most important
information from the original data, emphasizing feature extraction. In this way, FAE
skillfully balances between selecting informative yet diverse features. This complexity is
represented by the “diversity term”, which encourages the chosen features to be distinct
and uncorrelated. This ensures the feature subset effectively covers a wide range of
hyperspectral characteristics. In essence, FAE’s bottleneck layer plays a critical role in
extracting the essential spectral information while promoting feature diversity, making it a
powerful tool for HSI feature selection.

In this neural network architecture, feature selection is an important part of the
model’s post-training process. Initially, all features are given equal weights, implying equal
importance. As the model trains, these feature weights are updated. When the selection
parameter is set to ‘True’, a feature selection mechanism is activated. This mechanism
analyzes the feature weights to evaluate their significance. It determines a threshold based
on the largest weight value, and any feature whose weight falls below this threshold is
removed by setting it to zero. This process yields a reduced feature subset containing
only the top k features ordered by their learned importance. Applying this post-training
selection simplifies the model, lowers dimensionality, and improves generalization by
focusing on the most relevant features identified by the neural network during training.

Once feature selection with FAE is completed, different supervised classification
tasks are performed. Ensemble learning algorithms, such as Random Forest, LightGBM,
XGBoost, and CatBoost, are also used for supervised classification. These classifiers are
known for their robustness and ability to handle complex feature spaces. The selected FAE
features are used as inputs for these classifiers, which improves classification accuracy and
interpretability. This methodology enables a comprehensive evaluation of the effectiveness
of FAE-based feature selection in supervised classification scenarios, contributing to a
deeper understanding of HSI analysis techniques.

3. Experiments
3.1. Dataset Description

In this paper, the benchmarking dataset used is Pavia University. These data are com-
monly used in the HSI domain to assess and compare the performance of HSI processing
and analysis algorithms.

3.2. Result and Discussion

In our study, the application of FAE for feature selection yielded notable improvements
in classification performance. When compared to alternative feature selection methods, FAE
consistently demonstrated superior results across various evaluation metrics, including
accuracy, F1-score, recall, and reconstruction error, which is measured in mean squared
error (MSE) for evaluating the model’s reconstruction error.

As observed in Table 1, the FAE (Fractal autoencoder) approach yields excellent accu-
racy results across all classification methods. Furthermore, a closer examination of the data
presented in Tables 2 and 3 reveals that FAE consistently outperforms other classification
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methods, demonstrating superior F1 scores and recall values. These findings underscore
the effectiveness and versatility of the FAE approach in enhancing classification model
performance, highlighting its significant potential across various application contexts.

Table 1. Performance accuracy metric.

Accuracy

UDFS MCFS AE PCA FAE

RF 0.48 0.80 0.85 0.79 0.85
LGBM 0.44 0.57 0.56 0.55 0.57

XGBOOST 0.55 0.81 0.87 0.80 0.85
CATBOOST 0.50 0.81 0.82 0.50 0.85

Table 2. Performance F1-score metric.

F1-Score

UDFS MCFS AE PCA FAE

RF 0.26 0.87 0.86 0.82 0.90
LGBM 0.61 0.86 0.86 0.82 0.89

XGBOOST 0.29 0.82 0.82 0.83 0.88
CATBOOST 0.29 0.87 0.87 0.83 0.89

Table 3. Performance recall metric.

Recall

UDFS MCFS AE PCA FAE

RF 0.24 0.88 0.86 0.80 0.91
LGBM 0.00 0.84 0.80 0.77 0.89

XGBOOST 0.30 0.85 0.86 0.83 0.88
CATBOOST 0.29 0.86 0.86 0.83 0.88

The success of FAE in obtaining the most pertinent and varied set of features from HSI
underlines the observed improvements in classification accuracy and other performance
metrics. This thorough feature selection procedure makes sure that the chosen features
retain important spectral content information while also assisting in the reduction of
dimensionality. FAE has an advantage over other feature selection methods since it can
balance the preservation of important spectral information with the promotion of feature
diversity. Because of this quality, FAE is especially well suited for HSI, where it’s crucial to
strike a careful balance between feature information and redundancy.

4. Conclusions and Future Work

Mixed results were obtained via supervised classification using different feature selec-
tion techniques. While some techniques outperformed others, the classification outcomes
employing the Fractal Autoencoder (FAE) method’s feature selection showed the most
promise. This was completed in an effort to reduce the amount of time and money needed
to process hyperspectral images (HSI) while still getting accurate classification results. With
this decision, the workflow was streamlined and memory and computational needs were
decreased, improving the process overall and lowering costs.
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