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Abstract: For the structure and functioning of bio-molecules, metals are important. The main focus
of research remains the design and synthesis of novel metal-based complexes and metal ion binding
to substances in search of novel medicines. Studies have established the well-defined geometry,
thermodynamic stability and excellent coordination power of vanadium in different oxidation states.
This paper summarizes the biological activities of vanadium complexes, particularly their anticancer
activity. Future multidisciplinary research and analysis focused on comprehending the biochemistry
of vanadium complexes with different ligands is required.
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1. Introduction

Metals ions control a wide range of important biological processes, with remarkable
sensitivity and selectivity. In the sixteenth century, several metal ions were implicated in
the prevention and treatment of human cancer [1]. Metal ions and their ligands exhibit
a wide range of physiochemical properties, redox states, coordination numbers and ge-
ometries, resulting in a variety of reactivities, which are important tools for research in this
area. Inorganic biochemistry provides interesting opportunities for the development of
effective medicinal drugs [2,3]. It is important to mention that cisplatin (Figure 1a) has been
successfully used in medicine to treat several types of tumors [4], but it has several adverse
effects [5]. New platinum-based drugs like carboplatin and oxaliplatin (Figure 1b,c) helped,
to some extent, to mitigate the drawbacks of cisplatin [6,7]. The recent advancements in
medicine have established a wide variety of metal compounds with low toxicity and side
effects for treating tumors [8,9]. There have been several reports regarding the wide-ranging
uses of vanadium complexes as potential therapeutic agents with low toxicity [10].
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Figure 1. (a) Cisplatin, (b) carboplatin, (c) and oxaliplatin.

2. Anticancer Activity of Vanadium Complexes

Vanadium exists in many forms, ranging simple inorganic salts to more complicated
coordination complexes with both organic and inorganic ligands [11,12]. Vanadocene, a
vanadium-based drug, exhibited anticancer activity, and it is a member of metallocene [13].
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The first vanadocene sample to exhibit an important preclinical result was vanadocene
dichloride (VCp2Cl2) (Figure 2) [14].
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Recent research into speciation has demonstrated that [VCp2Cl2] evolves into [VCp2(OH)2]
at physiological pH, and the two OH- ions may be displaced by carbonate, oxalate,
phosphate and lactate to form the adducts [VCp2(CO)3], [VCp2(ox)], [VCp2(HPO4)] and
[VCp2(lacH)(−1)] with these ligands [15]. The methyl- and methoxy-substituted vanadocene
dichlorides exhibited anticancer activity against T-lymphocytic leukemia cells using MOLT-
4 [16]. Oxidovanadium (IV) complexes such as Metvan [bis(4,7-dimethyl-1,10-phenanthroli-
ne)sulfato-oxovanadium (IV)] (Figure 3) exhibited anticancer activity.
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Several human cancer cell lines, including leukemia cells, solid tumors and multiple
myeloma cells present in the ovary, breast, testis and prostrate, are damaged by this com-
plex through apoptosis [17–19]. Due to its positive pharmacodynamics properties and low
toxicity, it has the potential to be the first vanadium complex used in place of traditional
platinum chemotherapy [20]. Many flavonoids, like morin, quercetin, hesperidin, chrysin
and silibinin, as well as their oxidovanadium (IV) complexes, have been investigated to
reduce the proliferation of both normal (MC3T3E1) and malignant (UMR106) osteoblast
cells [21–23]. In human osteosarcoma cells, MG-63, oxidovanadium(IV)-silibinin (VOsil)
and oxidovanadium(IV)-chrysin (VOchrys) have all been well studied. VOchrys inhibited
cell viability in a concentration-dependent manner in human osteosarcoma cells. Addition-
ally, VOchrys had a lower IC50 value of 16 µM compared to values >100 µM for vanadyl
cation and chrysin, so it was the most potent anticancer agent in human osteosarcoma
cells [24].

Moreover, VOsil reduced the cell viability of the MG-63 cell line in a dose-dependent
manner more effectively than vanadyl cation and silibinin. The complex showed concen-
tration effects in both cyto- and genotoxic pathways [25]. Mixed ligands complexes of
oxidovanadium(IV) with Schiff base and thiosemicarbazone showed antitumor activity
toward several colonic cancer cell lines, like HT-29, HTC-116 and Caco-2, along with non-
malignant colon myofibroblasts (CCD18-Co) [26]. Some biologically active vanadium
complexes and their anticancer activities with different ligands are illustrated in Table 1.
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Table 1. Anticancer activity of vanadium complexes with different ligands.

S.No. Complex Ligand Biological
Activity References

1.
bis(triethylammonium)tris
[1,1-bis(indol-3-yl)-1-(3,4-

catecholate)methane]vanadate(IV)
3,3′-diindolylmethane Anticancer [27]

2. Vanadium N-(2-
hydroxyacetophenone)glycinate

Potassium N-(-2-
hydroxyacetophenone)glycinate Anticancer [28]

3. Vanadium(V)pyridyl
benzimidazole complex 2-(2-pyridyl)benzimidazole Anticancer [29]

4. VO-salen complex N,N’bis(salicylidene)ethylenediamine Anticancer [30]

3. Probable Mechanistic Action of Vanadium Complexes
3.1. The Warburg Effect: Targeting Tumor Cell Metabolism

Oxidovanadium compounds have been reported to arrest the G0/G1 phase cell cycle
and lower ∆ψm, causing mitochondrial membrane depolarization in the human hepatoma
cell lines HUH-7, HepG2 and BEL-7402 [31]. In another investigation, the metabolism
of cancer cells can be modified by vanadium [32]. Cancer cells, compared to normal cell
metabolism, upregulated glycolysis and glucose absorption, which caused an increase in the
formation of glycolytic metabolites and pyruvate. In cancer cells, glycolysis is uncoupled
from the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation. As
a result, numerous pyruvates produced during glycolysis were shifted toward lactate
fermentation compared to the mitochondrial oxidative metabolism. This metabolic process
is known as the “Warburg effect”, as it was first discovered by Otto Warburg. Warburg
phenotype is a typical tumor-related trait [33].

3.2. Vanadium Compounds and Formation of Reactive Oxygen Species

A potent anticancer treatment involves the redox balance because cancer cells are
highly susceptible to redox susceptibility, including hypoxia [34]. Complexes of metals can
directly or indirectly influence cellular redox balance by reducing/oxidizing metal or ligand
centers, as well as interactions with biomolecules in redox systems [35]. Only cancer cells are
affected by the redox activation of metal complexes, thus reducing the adverse impacts. It
has been demonstrated that vanadium complexes produce ROS (OH. And O2.), both in the
solvated ions and gas phase [36]. Anticancer activity against thyroid papillary carcinoma
has been demonstrated by vanadium complexes [37]. At low concentrations, orthovanadate
induced tumor suppression, which increased RET/PTC1 tyrosine 451 phosphorylation
and activated the Mtor/S6R member of the P13K/AKT signaling route via apoptosis,
which included the loss of mitochondrial membrane potential, ROS generation, DNA
fragmentation and the activation of caspase-3 [38]. Vanadium complexes also induced
ROS-mediated apoptosis in A549 lung adenocarcinoma and the MCF-7 human breast
cancer cell line by reducing metalloproteinase-2(MMP-2) and H-ras activation [39].

3.3. Transforming Growth Factor-β (TGFβ) Epithelial-to-Mesenchymal Transition (EMT)
Signaling Path

Several studies indicated that vanadium prevents tumor cells spread via lowering
production of MMP-2 or induced ROS-dependent apoptosis [40]. Using human breast
cancer MDA-MB-231 epithelial cell cultures and lung cancer A549, Petanidis et al. first
documented the detrimental impact of vanadium on (TGF-β)-mediated EMT and the
subsequent downmodulation of tumor stem cell signaling. Additionally, they suggested
that vanadium and carboplatin, working in combination, arrest the G0/G1 cell cycle and
sensitize tumor cells to carboplatin-induced death. This information is used to target cancer
stem cell-mediated metastasis and cancer cell metabolism in chemoresistant cells [41].
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3.4. Focal Adhesion Kinase (FAK) Signaling Path

FAK is essential for cancer cell adhesion, angiogenesis, survival, metastatic growth,
and motility [42]. Recently, it was shown that oxidovanadium(IV)-clioquinol (VO(CQ)2)
and VOchrys complexes inhibit FAK, thus decreasing the proliferation of human osteosar-
coma cells [43,44]. The results indicated that VO(CQ)2 is situated in the kinase domain
stimulation loop and interacts with proteins in the ATP site of binding. VO(CQ)2 showed
that the upmodulation of Tyr576 and Tyr577 sites at 2.5 µM and the activation of Tyr576
and Tyr577 at 10 µM reduced 14-fold [45]. In a related study, researchers discovered
that VOchrys upregulated the phosphorylation of the Tyr577 site, while it downregulated
Tyr397 [43]. The most active site for the autocatalytic action of FAK is the Tyr397 site, which
is responsible for the phosphorylation of tyrosine [42]. These findings suggest that VOchrys
targets the Tyr397 site to inhibit the phosphorylation of FAK [46].

3.5. The Notch-1 Signaling Path

The Notch-1 signaling route is a highly regulated cell signaling mechanism that regu-
lates the development of embryos, as well as disrupting many kinds of tumors, like breast
or lung cancer [47–49]. Recently, it has been demonstrated that complexes of vanadium
inhibit the proliferation of the MDA-MB-231 cell line, which is an example of malignant
and triple-negative breast cancer that is resistant to therapy. The [VO(bpy)2Cl]Cl com-
pound (bpy = bipyridyl) increases caspase-3, levels including apoptosis cell death [50]. The
researchers also discovered that the Notch-1 pathway was inhibited via a reduction in the
production of the Notch-1 gene [47]. Furthermore, Y-cell acute lymphoblastic leukemia in
animal models and cultured cells has been shown to exhibit antiproliferative effects when
Notch-1 signaling is inactivated [49] (Figure 4) [40] [open access].
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4. Conclusions

This paper summarized the anticancer activity of vanadium complexes with different
ligands. Studies have established well defined geometry, thermodynamic stability and
excellent coordination power of vanadium in different oxidation states. Multidisciplinary
research focused on comprehending the biochemistry of vanadium complexes with dif-
ferent ligands as well as synthesizing novel complexes which have low toxicity, better
solubility and bio-availability.
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