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Abstract: Fault occurrence in practical systems, if not addressed, can cause diminished performance
or even system breakdown. Therefore, fault detection has emerged as a crucial challenge in ensuring
system safety and reliability. This paper presents a novel fuzzy observer aimed at reconstructing
actuator and sensor faults in nonlinear systems, even when subjected to external disturbances. The
approach we propose utilizes the Takagi-Sugeno fuzzy model and Lyapunov function. Initially,
by filtering the system output, we construct a system where actuator faults correspond to the
original actuator and sensor faults. Subsequently, the impact of disturbance on state estimations is
minimized by employing the H-infinity performance criteria. We demonstrate that, for non-disturbed
systems, these estimations gradually converge to their true values. In designing the observer gains,
transformation matrices are derived by solving linear matrix inequalities. Our approach boasts some
advantages over existing methods. By assuming that the premise variables are immeasurable, we
enhance the usability of our approach. As a proof of concept, we evaluate two practical systems. The
simulation results underline the benefits of our proposed method in terms of rapid and accurate fault
detection performance.

Keywords: Takagi-Sugeno fuzzy system; actuator fault; sensor fault; Lyapunov function; linear
matrix ine-qualities; H∞ performance

1. Introduction

Takagi-Sugeno Fuzzy (TSF) systems, particularly effective in engineering for observer
and fault detection, use observers like the Proportional Integral Observer (PIO) and its
enhanced version, the Proportional Multi-Integral Observer (PMIO) [1], for complex non-
linear systems such as the Continuous Stirred Tank Reactor (CSTR) in chemical engineering.
The CSTR, a multi-input multi-output (MIMO) system, presents control and estimation
challenges due to its nonlinear dynamics [2]. Luenberger’s observers, initially for linear
systems, have been adapted for nonlinear systems, offering cost-effective state estimation
solutions [3].

The TS multi-model approach simplifies state estimation in CSTRs by interpolating
between linear models for different behaviors [4]. This is crucial in scenarios with simul-
taneous unknown input actuator and sensor faults, necessitating integrated control and
diagnostic systems. For TS models, several state and unknown input estimation methods
have been developed. These include PI observers for decoupled Multiple Models [5],
UI-PI observers with measurable premise variables [6,7], and a TS multi-model based PI
observer for simultaneous state and input estimation [8]. However, PI observers have
limitations with time-varying inputs, leading to the development of PMI observers, like
the Thau-Luenberger observer [9], capable of assessing all unknown input derivatives.
This research aims to refine PMI-based unknown input observers for TS-model systems,
focusing on convergence conditions as linear matrix inequalities.
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The paper’s structure is as follows: Section 2 introduces the TS fuzzy model and
constructs a fictitious system with a fault, with the design of a PMI observer, ensuring
estimation error stability and H∞ performance. In Section 3, we validate the approach with
simulation results. Conclusions are drawn in Section 4.

2. Problem Statement

Consider the Takagi-Sugeno model described by the system of equations:{
ẋ(t) = ∑Q

i=1 µi(x(t))(Aix(t) + Biu(t) + Ei fa(t)) + Mw(t)
y(t) = Cx(t) + F fa + Hw(t)

(1)

Here, x(t) ∈ Rn represents the state vector, u(t) ∈ Rnu is the control input vector,
fa(t) ∈ Rn fa signifies the unknown input vector including actuator and sensors faults, w(t)
is the disturbance, and y(t) ∈ Rny corresponds to the output vector.

Consider the matrices Ai, Bi, Ei, M, C, F, and H, which are constants with appropriate
dimensions. The activation functions µi(x(t)), dependent on the system’s state, adhere to
the following convexity properties [10,11]:{

∑Q
i=1 µi(x(t)) = 1
∀i ∈ {1, . . . , Q} (2)

The scalar Q designates the number of local models.

Hypothesis 1. Unknown input fa(t) satisfies:

f (q)a (t) = 0 (3)

Generally, the sequences fa
(1)(t), fa

(2)(t), . . . , fa
(q−1)(t) denote the continuous derivatives

of fa(t), expressed as: 
ḟa(t)
ḟa1(t)

...
ḟaq−1(t)

 =


fa1(t)
fa2(t)

...
faq(t)

 (4)

System (1) can be expressed as a perturbed system with weighting functions µi based on the
estimated state, where the signals u(t), fa(t), and w(t) are bounded.{

ẋ(t) = ∑Q
i=1 µi(x̂)(Aix + Biu + Ei fa + Mw(t) + δ(t))

y(t) = Cx(t) + F fa + Hw(t)
(5)

where:

δ(t) =
Q

∑
i=1

(µi(x)− µi(x̂))(Aix + Biu + Ei fa + Mw(t))

Then, system (1) can be articulated as:{
ẋa(t) = ∑Q

i=1 µi(x̂(t))(Āixa(t) + B̄iu(t) + σ̄iΩ̄(t))
y(t) = C̄xa(t) + F̄Ω̄(t)

(6)

xa =


x
fa
fa1
...

faq−1

, Āi =



Ai Ei 0 . . . 0 0
0 0 In fa

. . . 0 0

0 0 0
. . . 0 0

...
...

...
...

...
...

0 0 0 . . . 0 In fa

0 0 0 . . . 0 0


, B̄i =


Bi
0
...
0
0

, σ̄i =


σT

i
0
...
0

, (7)
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Ω̄(t) =
[

σ(t)
w(t)

]
, and C̄ =

[
C F 0 . . . 0 0

]
(8)

where: σi =
[

In M
]
, and F̄ =

[
0 H

]
,

Hypothesis 2. The pairs
(

Ai, C̄
)

are observable for all i.

The Proportional Multiple Integral (PMI) observer can be described by the Equation (9),
and the principle of this observer is presented in Figure 1:



˙̂x(t) = ∑Q
i=1 µi(x̂(t))

(
Ai x̂(t) + Biu(t) + Ei f̂a(t) + LPi(y(t)− ŷ(t))

)
˙̂fa j(t) = ∑Q

i=1 µi(x̂(t))
(

f̂a j+1 + Lj
Ii(y(t)− ŷ(t))

)
, j = 1, . . . , q − 2

˙̂fa j(t) = ∑Q
i=1 µi(x̂(t))(LIi(y(t)− ŷ(t))) j = q − 1

ŷ(t) = Cx̂(t) + F f̂a

(9)

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑳𝑷𝒊

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑳𝑰𝒊

𝒒−𝟏

.

.

.

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑳𝑰𝒊

𝟐

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑳𝑰𝒊

𝟏

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑳𝑰𝒊

𝟎

න

න

න

න

෢𝒇𝒂𝒒−𝟏

.

.

.

෢𝒇𝒂𝟐(t)

෢𝒇𝒂𝟏(t)

෢𝒇𝒂(t)

G

C

න

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑬𝒊

σ𝒊=𝟏
𝒓 𝒉𝒊 ෝ𝒙 𝑩𝒊 σ𝒊=𝟏

𝒓 𝒉𝒊 ෝ𝒙 𝑨𝒊

+

+

+

+

+

+
+

-

+

+

++
+ +

u(t)

෢𝒇𝒂(t)

ෝ𝒙(t)

ෝ𝒚(t)

y(t)
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Figure 1. Principle of the PMI Observer.

With the above, the augmented PMI observer that incorporates an output error into its
activation functions is articulated.{

x̂a(t) = ∑Q
i=1 µi(x̂(t))(Āi x̂a(t) + B̄iu(t) + L̄i(y(t)− ŷ(t)))

ŷ(t) = C̄x̂a(t)
(10)

where L̄i =
[

LT
Pi LT

Ii L1T

Ii . . . Lq−2T

Ii Lq−1T

Ii

]T
.

The dynamic of the state estimation error is presented in the following augmented format:
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˙̄e =
Q

∑
i=1

µi(x̂)((Āi − L̄iC̄)ē + (σ̄i − L̄i F̄)Ω̄) (11)

Theorem 1. The PMI Observer, as defined by (9), designed to Simultaneously estimate the state
and the unknown inputs of the fuzzy system represented in (1). This is achieved while minimizing
the L2-gain γ̄ from the unknown inputs to the augmented state estimation error ē. This can be
obtained by determining a positive definite matrix P, matrices Mi, and a positive scalar γ̄ that
satisfy the following LMI constraints for i = 1, . . . , r:[

ĀT
i P + PĀi − MiC̄ − C̄T MT

i + I Pσ̄i − Mi F̄
σ̄T

i P − F̄T MT
i −γ̄I

]
< 0 (12)

where γ =
√

γ̄.
The observer gains: L̄i = P−1Mi

Proof. Where System (1) stands as a paragon of stability and all preceding signals remain
bounded, a transformative revelation unfolds. By invoking Lemma of Perturbation attenu-
ation and satisfying the condition ∥ē(t)∥2 < γ∥ω̃(t)∥2 yields an enigmatic Linear Matrix
Inequality (LMI):[

ĀT
i P + PĀi − PL̄iC̄ − C̄T L̄T

i P + I Pσ̄i − PL̄i F̄
σ̄T

i P − F̄T L̄T
i P −γ2 I

]
< 0 (13)

The essence of Theorem 1 obtain through variable transformations:

Mi = PK̄i, γ̄ = γ2

3. Practical Example

As a demonstration of the methodology, we examine a nonlinear CSTR system de-
picted by a multi-model with unmeasurable premise variables. This multi-model comprises
two local models, each with three states [3].

Consider a thoroughly mixed CSTR where the multi-component chemical reaction
A ⇌ B → C takes place. The Schematic of the Continuous Stirred Tank Reactor (CSTR) is
shown in Figure 2, illustrating the concentrations of species A, B, and C as CA, CB, and CC
respectively. The reactor temperature is denoted by T, with CA f and Tf representing the
feed’s actual concentration and temperature. The flow rate and temperature of the cooling
water are indicated by qc and Tc. The system’s nonlinear dynamics can be represented as:

ẋ =

−4 0.8796 0
3 −3.6388 0
0 1.7592 −1

x +

0
1
0

u +

 0.5x2
2

−1.5x2
2

x2
2

, (14)

where x =
[
x1 x2 x3

]T denotes the concentrations of species A, B, and C respectively.
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𝑴𝑶𝑻𝑶𝑹

𝑹𝒆𝒂𝒄𝒕𝒐𝒓 𝒇𝒆𝒆𝒅

𝑻𝒇, 𝑪𝑨𝒇

𝑪𝒐𝒐𝒍𝒂𝒏𝒕 𝒊𝒏

𝑻𝒄, 𝒒𝒄

𝑹𝒆𝒂𝒄𝒕𝒐𝒓 𝒑𝒓𝒐𝒅𝒖𝒄𝒕
𝑪𝒂, 𝑪𝒃, 𝑪𝒄, 𝑻

𝑪𝒐𝒐𝒍𝒂𝒏𝒕 𝒐𝒖𝒕𝒍𝒆𝒕

Figure 2. Schematic of CSTR.

To evaluate the effectiveness of our proposed approach, we introduce a fault and
disturbance to the dynamics, leading to:

ẋ =

−4 0.8796 + 0.5x2 0
3 −3.6388 − 1.5x2 0
0 1.7592 + x2 −1

x +

0
1
0

u +

1
0
0

 fa +

 0.6
0.05
0.03

w(t)

y =

[
1 0 0
0 1 0

]
x +

[
0.01

0.001

]
fa +

[
0.01
0.03

]
w(t)

(15)

Assuming the concentration of species B is dimensionless, it is given by x2 ∈ [−1, 1].
This allows the definition of two membership functions using Takagi-Sugeno (TS) rules as:

h1 =
1 − x2

2
and h2 =

1 + x2

2
. (16)

With this, the corresponding local linear TS matrices can be established as:

A1 =

−4 0.8796 − 0.5 0
3 −3.6388 + 1.5 0
0 1.7592 − 1 −1

, A2 =

−4 0.8796 + 0.5 0
3 −3.6388 − 1.5 0
0 1.7592 + 1 −1

, B1 = B2 =

0
1
0

,

E1 = E2 =

1
0
0

, and F =

[
0.01

0.001

]
(17)

Given that these TS fuzzy system matrices comply with all the preconditions, the TS
fuzzy observer (9) is constructible.

For the simulation setup, parameters and input signals were chosen as follows:
u = sin(t), with initial conditions x0 =

[
0.15 0.2 0.1

]T and x̂0 =
[
0.15 1 3

]T . The
disturbance profile depicted in Figure 3.
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Figure 3. Disturbance w(t).

The Linear Matrix Inequality (LMI) outlined in the provided theorem is addressed
using the Matlab Yalmip toolbox, leading to the determination of the observer’s gains. The
results of state and fault estimation are visually depicted in Figures 4 and 5.

In Figure 4, it is evident that the estimated states converge rapidly to their true
signals right from the beginning. Figure 5 displays a robust estimation of the fault. These
simulation outcomes distinctly demonstrate that the proposed observer not only guarantees
accurate state estimation but also effectively handles concurrent fault detection, even in the
presence of unknown disturbances.
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2
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Figure 4. States and their estimates.
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Figure 5. Unknown input and the State estimation error.

4. Conclusions

In this study, we focus on estimating states and unknown inputs in Takagi-Sugeno
systems that have unmeasurable premise variables, utilizing a Proportional Multiple
Integral (PMI) observer. We define the stability conditions using Linear Matrix Inequalities
to ensure robust performance. To validate the PMI observer’s efficacy, we conduct a
simulation using the Continuous Stirred Tank Reactor (CSTR) system as a practical example.
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