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Abstract: Beyond traditional surveillance applications, sensor-based human action recognition and
segmentation responds to a growing demand in the health and safety sector. Recently, skeletal action
recognition has largely been dominated by spatio-temporal graph convolutional neural networks
(ST-GCN), while video-based action segmentation research successfully employs 3D convolutional
neural networks (3D-CNNs), as well as vision transformers. In this paper, we argue that these two
inputs are complementary, and we develop an approach that achieves superior performance with a
multi-modal ensemble. A multi-task GCN is developed that can predict both frame-wise actions as
well as action timestamps, allowing for the use of fine-tuned video classification models to classify
action segments and achieve refined predictions. Symmetrically, a multi-task video approach is
presented that uses a video action segmentation model to predict framewise labels and timestamps,
augmented with a skeletal action classification model. Finally, an ensemble of segmentation methods
for each modality (skeletal, RGB, depth, and infrared) is formulated. Experimental results yield 87%
accuracy on the PKU-MMD v2 dataset, delivering state-of-the-art performance.

Keywords: action segmentation; skeletal action recognition; video understanding; deep learning;
computer vision

1. Introduction

Automated analysis of human behavior from video data has the potential to empower
modern health, safety, and surveillance applications. Real-world video data mostly comes
in the form of untrimmed streams, hence the motivation for developing action segmentation
algorithms, where the goal is to segment a video and classify these segments, providing
a dense descriptor of the sequence. Using modern deep learning techniques, human
activity understanding has undergone rapid progress, wherein two prominent streams of
research and application have emerged. The first such stream is the task of skeletal action
understanding, involving both classification and segmentation. Deep learning approaches
use large, labelled datasets [1,2], training models on sequences of skeletal frames of a fixed
topology to predict action classes. To date, the most prominent approaches for skeletal
action recognition employ spatio-temporal graph convolutional networks [3–6].

The second stream is the established research area of video action understanding
using RGB videos [7]. Action classification networks employing 3D-CNNs [8–10] as well as
vision transformers [11] currently outperform other approaches. For the task of action seg-
mentation, the multi-stage temporal convolutional network (MS-TCN) framework [12,13]
has generated impressive results, in which frame-wise features are generated in an offline
process by a 3D-CNN’s backbone, after which each frame is classified with a temporal
convolutional network, making use of dilated convolutions and a refinement stage. Further
improvements to the MS-TCN framework can be achieved using timestamp prediction
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with the action segmentation refinement framework (ASRF) model [14], addressing the
over-segmentation problem in which too many action segments are predicted.

In this paper, it is argued that these two streams can form complementary features
for the goal of action segmentation by using a multi-modal ensemble approach. Skeletal
action sequences, while sometimes noisy and dependent on the accuracy of the underlying
pose estimation algorithm as well as depth map quality, are invariant to texture, lighting,
clothing choice, and the layout of the scene. By contrast, while video understanding
algorithms have to deal with the aforementioned factors, they allow for the incorporation
of objects and surfaces within the scene to guide predictions. Consider the scenario of
an individual interacting with an object, absent in a skeletal sequence, but present in a
video. The presence of the object cannot be inferred by skeletal models, only the types of
movements associated with the person interacting with said object.

To this end, multi-modal action segmentation approaches are developed in this work
to boost segmentation accuracy. The novel contributions of this paper are the following:

• A skeletal segmentation approach that predicts both frame-wise labels and timestamps,
using a video classification model to refine predictions.

• A video segmentation approach which predicts both frame-wise labels and timestamps,
using a skeletal action recognition model to refine predictions.

• An ensemble of video and skeletal models, each employing their own timestamp-based
refinements, to predict frame-wise labels.

Experimental results on the PKU-MMD v2 [2] dataset validate the effectiveness of these
multi-modal ensembles, and state-of-the-art results are achieved using a skeletal–video
action segmentation ensemble.

2. Methods

In this section, the three proposed approaches are introduced, respectively a skele-
tal segmentation and video classification ensemble, a video segmentation and skeletal
classification ensemble, as well as a skeletal–video segmentation ensemble. To maximize
performance, the skeletal predictions in the approaches presented consist of a weighted
ensemble of predictions made from joint, bone, joint motion, and bone motion inputs as
described by Shi et al. [4] and employed in state-of-the art approaches [6]. Further, video
models consist of ensembles of 3 models trained on RGB, infrared (IR), and depth inputs.
All ensemble weights are obtained through experimentation. An overview of the first two
approaches is given in Figure 1.
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2.1. Skeletal Segmentation and Video Classification Ensemble

The skeletal segmentation backbone chosen follows the multi-stage spatial-temporal
graph convolutional network (MS-GCN) [15], developed by Filtjens et al. It consists of
10 layers of spatio-temporal graph convolutions [3], where the temporal convolutions
employ increasingly large dilation factors, originally set to powers of 2i for i = 1, . . . 9,
but chosen as non-strictically increasing values determined through experimentation in
this work.

The network head follows the ASRF proposed by Ishikawa et al. [14]. The output of
the backbone is pooled along the spatial/vertex axis and fed into a softmax layer to obtain
a tensor of shape (N, T, C).

Where N is the batch size, T is the number of frames, and C is the number of classes.
Next, a series of refinement layers is enacted. Each refinement layer consists of a dimen-
sionality reduction using a 1 × 1 convolution, followed by a sequence of dilated temporal
convolutions of increasing factor (the same as the backbone), followed by a 1x1 convolution
with C channels that is then input to a SoftMax layer. Note that the input of each refinement
layer is the logits obtained from the previous layer. During training, each refinement stage’s
output contributes to the segmentation loss, while during inference the output of the last
refinement layer yields the model prediction.

A second branch is added that predicts action boundaries, or rather timestamps, a
tensor of shape (N, T), where a value larger than 0.5 indicates the presence of an action
boundary. The skeletal segmentation predictions can be refined by using a weighted sum of
a majority vote of predictions within timestamps with the original frame-wise predictions.
In this work, we augment the ASRF framework to be multimodal. Using the predicted
timestamps, the corresponding frames in the RGB, depth and IR videos are interpolated
to a fixed length and fed to a video classifier to obtain class predictions, which are then
expanded to the length of the clip. A weighted sum of predictions yields the final prediction.
The loss for training the augmented MS-GCN model is given by

L(p, gt) = ∑n,i CEseg

(
pseg

n,i , gseg
n,i

)
+ λ1 ∑n,i CEts

(
pts

n,i, gts
n,i
)
+ λ2S(p) (1)

where p is the model prediction, g is the ground truth, CEseg is the cross-entropy loss
applied framewise, n indexes over batch elements, and i indexes over refinement layers.
CEts is a weighted binary cross entropy loss applied to timestamp predictions. S is the
smoothing loss given by Abu Farha et al. [12] which is used to prevent over-segmentation
by enforcing consistent predictions across local windows of time, and the parameters λ1, λ2
weight the timestamp loss and smoothing penalty. The loss is averaged over batch size and
refinement layers. During inference, non-maximal suppression with a window size of 5 is
applied to timestamps to prevent near-duplicate boundaries.

The video model chosen for classification is the multi-scale vision transformer MVit [11],
given its strong performance on the Kinetics-400 dataset [7]. Pre-trained weights are
obtained from the PyTorch video (https://pytorchvideo.readthedocs.io/en/latest/model_
zoo.html (accessed 14 November 2023)) repository, obtained from training on Kinetics-400.
Infrared and depth models are modified such that the weights of the input layer, consisting
of a 3D convolution, are averaged across the three input channels to be able to input a single
channel for efficiency. The MVit networks are trained on action-specific classification clips
rather than long sequences exhibiting various actions, interpolated to 32 frames. Denoting
y as MSGCN(x) for a skeletal input x, the overall segmentation prediction is given by

γ1 ASRF(y) + γ2Concat(MVit(c1, . . . cK)) (2)

where ASRF denotes the majority vote refinement within skeletal segmentation predicted
timestamp windows, and Concat(MVit(c1, . . . cK)) is the concatenation along the temporal
axis of ordered window predictions from the video classification model for K windows,
and γ1, γ2 are weights. The class labels per window are broadcast to the window.

https://pytorchvideo.readthedocs.io/en/latest/model_zoo.html
https://pytorchvideo.readthedocs.io/en/latest/model_zoo.html
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2.2. Skeletal Classification and Video Segmentation Ensemble

For comparison, we experimented with a segmentation ensemble where roles of the
skeletal network and video network are swapped from Section 2.1. Following standard
protocol [12], video features are computed in an offline process by a 3D-CNN. We employ
X3D-large [10] without a network head, using crops of 16 frames of spatial resolution
(312, 312), where backbone features are pooled and reshaped to a feature vector of dimen-
sion 3888 (432 channels, 3 × 3 spatial resolution) per frame. The X3D model is pre-trained
first on Kinetics-400, then fine-tuned on classification training clips specific to the PKU-
MMD v2 dataset split for which features were generated. The network head is the same
as the skeletal model in Section 2.1, predicting both frame-wise labels and timestamps.
The skeletal classification selected was the ST-GCN++ model developed by Duan et al. [6],
which innovates relative to the original ST-GCN by employing a set of parallel convolutions
of different kernel sizes and dilation factors in the temporal layer of the graph convolutions,
concatenating the result to obtain more discriminative temporal features. The same loss is
used as described by equation (1), where the predictions at inference for X3D frame-wise
features y is given by

γ1 ASRF(y) + γ2Concat(STGCN(c1, . . . cK)) (3)

2.3. Skeletal and Video Segmentation Ensemble

An alternative skeletal and video ensemble is proposed as a weighted sum of pre-
dictions from the single modality segmentation methods given in Sections 2.1 and 2.2,
i.e., pure skeletal segmentation and pure video segmentation models. Since both models
predict timestamps, two separate types of window-based refinement were experimented
within early trials. With a single refinement stage, each modality’s timestamp weighted
predictions are summed before applying non-maximal suppression, after which refinement
occurs. With a double refinement scheme, each modality’s predicted timestamps are used
in separate specific refinements, after which the weighted sum of overall predictions is
used as the final network output. Early experiments showed that the double-refinement
scheme performed the best by a slight margin, and therefore, it is the approach considered
for experiments in this work.

3. Experimental Validation
3.1. Experiments

All experiments were conducted on the PKU-MMD v2 dataset [2], which provides
sequences labelled framewise for 42 different action classes in four different modalities:
skeletal keypoints for single or two person actions obtained from a Kinect v2 depth camera,
RGB videos of resolution 1920 × 1080, and depth and infrared maps of resolution 512 × 424.
There are 13 subjects and three different camera views, where video lengths are between
1 and 2 min long with an average of seven action instances per video. There are two
splits used for testing, the cross subject (cs) in which different subjects are used for testing
and training, and the cross view (cv) setup, in which different camera views are used for
training versus testing. The cs split has a 773/233 train/test split, while the cv split has a
669/337 split. Due to the small number of training samples, we augmented the training set
with examples from the PKU-MMD v1 dataset for the classes that overlap with v2. During
training, frames with labels of 0 (the unknown class) were removed for both skeletal and
video data types, while during inference, the predictions for these frames were ignored,
as is standard practice in semantic segmentation. For all networks trained, the optimizer
chosen was SGD with Nesterov momentum, weight decay of 0.0005, and a cosine annealing
learning rate scheduler, with all code implemented in PyTorch and trained on a single
NVidia RTX 4090 GPU.
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For both skeletal segmentation and classification, data augmentation consisted of light
rotations about a random axis and small scaling [6]. The batch size for skeletal segmentation
was four, trained for 300 epochs, with an initial learning rate of 0.1. The batch size for
skeletal classification was 16, with random uniform sampling employed [6] to yield a clip
of fixed length of 150, trained for 100 epochs, using an initial learning rate of 0.01. During
inference, fixed uniform sampling was used.

With respect to video segmentation, no data augmentation was used, where a batch
size of four was used, trained for 250 epochs with an initial learning rate of 0.001. For
video classification, clips were resized in an offline process to (224, 224) resolution using
bicubic interpolation with anti-aliasing, after a center-wise crop. Depth and IR videos were
converted to grayscale videos using min/max normalization. Random right/left flipping
was used for all video modalities, and light color jittering applied to entire videos randomly
during RGB video training. During training and inference, videos were interpolated along
the temporal axis to 32 frames. A batch size of six was used, trained for 30 epochs, with an
initial learning rate of 0.001.

3.2. Results and Discussion

The results of all models proposed, including skeletal and video segmentation base-
lines are shown in Tables 1 and 2 for the cross subject and cross view splits, respectively.
On both splits, the skeletal and video segmentation ensemble exhibits the best trade-off
between accuracy and segment F1@50 measures; although, skeletal action segmentation ex-
hibits more of an over segmentation issue, affecting the F1@50 score negatively, presumably
due to noise in the skeletons causing sudden spurious predictions. The video segmentation
models struggled to predict timestamps as successfully and so the corresponding boost
of adding a skeletal classifier was not successful on the cv split, and marginal on the cs
split. In both splits, the video classification added on top of a skeletal segmentation showed
modest improvements in accuracy and segment F1@50 score.

In Table 3, a comparison to the MS-GCN model originally presented by Filtgens
et al. [15] is shown. Note that in this original formulation, only the joint representation is
used as an input, hence a large performance increase is achieved using the four-stream
representation (joints, bones, joint motion, bone motion), before additionally considering
the benefit of video predictions. The overall performance increase is quite large with an
18.5% increase in accuracy and a 17.1% increase in the segment F1@50 score.

Table 1. Experimental results on the PKU-MMD v2 cross subject split.

Model Framewise Acc (%) Segment F1@50 Timestamp—F1

MS-GCN/ASRF only
(Skeletal Segmentation) 84.0 60.7 77.7

X3D/ASRF only
(Video Segmentation) 82.2 73.1 64.1

MS-GCN/ASRF + MVit
(Skeletal Segmentation + Video Classification) 84.6 60.7 77.7

X3D/ASRF + ST-GCN++
(Video Segmentation + Skeletal Classification) 82.6 74.4 64.1

MS-GCN/ASRF + X3D/ASRF
(Skeletal Segmentation + Video Segmentation) 87.0 68.7 79.0
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Table 2. Experimental results on the PKU-MMD v2 cross view split.

Model Framewise Acc (%) Segment F1@50 Timestamp—F1

MS-GCN/ASRF only
(Skeletal Segmentation) 88.4 68.8 77.4

X3D/ASRF only
(Video Segmentation) 76.4 64.4 61.9

MS-GCN/ASRF + MVit
(Skeletal Segmentation + Video Classification) 89.2 70.1 77.4

X3D/ASRF + ST-GCN++
(Video Segmentation + Skeletal Classification) 75.1 65.8 61.9

MS-GCN/ASRF + X3D/ASRF
(Skeletal Segmentation + Video Segmentation) 88.4 74.5 79.5

Table 3. Comparing the best performing model to other work from the literature.

Model Framewise Acc (%) Segment F1@50

MS-GCN [15] 68.5 51.6

MS-GCN/ASRF + X3D/ASRF
(Skeletal Segmentation
+ Video Segmentation)

87.0 68.7

4. Conclusions

In conclusion, in this work we have presented a novel approach to multi-modal human
action segmentation, with experimentally validated results showing improved accuracy
on the task of action segmentation using both skeletal inputs as well as video inputs
(RGB, depth, and infrared). As a potential avenue for future work, the use of lightweight
3D-CNNs as well as compact skeletal graph convolutional networks could be explored
for the goal of real-time, or near real-time, multi-modal action segmentation in order to
facilitate real-world applications that are time sensitive.
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