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Abstract: This paper focuses on the development and validation of an automatic learning system for
the classification of tactile data in form of vibro-tactile (accelerometer) and audio (microphone) data
for texture recognition. A novel combination of features including the standard deviation, the mean,
the absolute median of the deviation, the energy that characterizes the power of the signal, a measure
that reflects the perceptual properties of the human system associated with each sensory modality,
and the Fourier characteristics extracted from signals, along with principal component analysis, is
shown to obtain the best results. Several machine learning models are compared in an attempt to
identify the best compromise between the number of features, the classification performance and the
computation time. Longer sampling periods (2 s. vs. 1 s) provide more information for classification,
leading to higher performance (average of 3.59%) but also augment the evaluation time by an average
of 29.48% over all features and models. For the selected dataset, the XGBRF model was identified to
represent overall the best compromise between performance and computation time for the proposed
novel combination of features over all material types with an F-score of 0.91 and a computation time
of 4.69 ms, while kNN represents the next best option (1% improvement in performance at the cost of
2.13 ms increase in time with respect to XGBRF).

Keywords: texture classification; accelerometer; microphone; machine learning; feature selection

1. Introduction

The tactile perception of material properties is a difficult task, but also of great impor-
tance for the skillful manipulation of objects in fields such as robotics, virtual reality and
augmented reality. Given the diversity of material properties, integrated tactile perception
systems require efficient extraction and classification of features from data collected by
tactile sensors. There are several publications on the topic of texture recognition in the liter-
ature. Characteristics of material textures can be retrieved using vision-based, tactile-based
or sound-based data. Most publications rely uniquely on images to identify textures in
various domains [1], while others are using sensor data collected by various tactile technolo-
gies (i.e., Microelectromechanical Magnetic, Angular Rate and Gravity–MARG systems,
pressure sensors, accelerometers, microphone, etc.) while the surface of the sensor enters
in contact with a probed textured surface. Other publications capitalize on combinations
of various tactile sensory sources [2–4]. Most publications employ feature extraction tech-
niques [5] to identify the most relevant data to focus on prior to applying machine learning
solutions to classify or recognize textures or textured materials. In tactile sensing, known
feature extraction techniques include principal component analysis, PCA [4,6], frequency
signatures [7] and the Fast Fourier Transform (FFT) [3,8], both for sound and vibro-tactile
data. Some researchers focus mostly on real-time processing [3,4], and tend to choose
less complex machine learning solutions (such as the k-nearest neighbors, KNN [3,7,8],
two-layer multilayer perceptron MLP [3,4], or SVM [3,6]). Others make use of convolu-
tional neural network architectures [8] that do not require the extraction of features, as this
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process is embedded in their architecture. However, they come at additional computational
cost due to their increased complexity.

This paper focuses on the development and validation of an automatic learning
system for the classification of tactile data in form of vibro-tactile (accelerometer) and
audio (microphone) data for texture recognition. We aim to identify the right balance
between classification accuracy and compact, fast solutions, with potential for real-time
performance. We propose a novel combination of features for this purpose. In order to
reduce the dimensionality of the tactile dataset and identify the most compact models, we
apply PCA as well as a process of selection of features based on their importance. Several
machine learning models are compared in an attempt to identify the best compromise
between the number of features, the classification performance and the computation time.
We also demonstrate that the choice of the sampling length from the tactile signals is an
important aspect that has a significant impact on classification performance.

2. Materials and Methods
2.1. Dataset for Texture Classification

The VibTac-12 dataset used in this paper is created by Kursun and Patooghy [9]. It
is based on a vibro-tactile stimulator system to generate controlled vibrations on textured
materials (i.e., sandpapers of various grits, Velcro strips with various thicknesses, aluminum
foil and rubber bands of various stickiness) and an embedded system to record tactile data.
Two sensors, a microphone and an accelerometer attached to a probe, capture the audio
and vibro-tactile signals as the probe rubs against the surface of textured materials. The
interested reader is invited to consult reference [3] for details on the experimental setup
and the data collection process. In this paper, we employ the two available tactile data
sources in the dataset, namely sound recordings and data collected by the accelerometer
that measures the changes in acceleration and orientation of the probe in contact with the
texture surface along three axes. It is important to state that we are not making use of the
data processing sequence that the authors of [3] used, we only use their raw data. Our
focus is to identify a set of powerful features that allow us to accurately clasify these data
in the shortest time possible.

2.2. Proposed Solution for Texture Classification from Sound and Vibro-Tactile Data

Figure 1 illustrates the proposed solution for texture classification from sound and
vibro-tactile data. Input data consists of sound data contained in the Sdf.csv file from the
VibTac-12 dataset [9] and of accelerometer data, and contained in the Xdf, Ydf and Zdf
files, respectively. This data goes through a pre-processing stage in order to normalize
it, eliminate outliers and extract and select features in order to transform it into a usable
format for classification. Texture class names are encoded with numerical identifiers.
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To study the impact of each source (type) of data, of the chosen features and of the
length of the sampling period on the performance of texture recognition, we created several
datasets. We name them in Figure 1 to clearly identify their data source, features and lengths.
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It is important to mention that creating these different datasets is only for making their
interpretation easier. They correspond in fact to the feature extraction process in machine
learning that does not require the creation of separate datasets. Our solution is implemented
in Python. We make use of several open-access libraries, including Librosa [10], a library
for audio signal processing, Scikit-learn for the implementation of the machine learning
algorithms and the Eli5 library [11] to identify feature importance.

2.3. Data Processing
2.3.1. Data Transformation

For each texture, 20 s of multimodal recordings are available. Therefore, each line
of the Xdf, Ydf and Zdf files respectively contains 4000 samples (20 s × 200 Hz sampling
rate) and each line of the Sdf file contains 160,000 samples (20 s × 8 kHz sampling rate). To
reduce the computational load and in order to create our datasets, we sampled, without
replacement, 100 random samples from the raw data sequences, and thus each data set
contains a total of 1200 records. A unique multimodal tactile dataset (SXYZ) containing
sound data (S) and accelerometer (XYZ) data is thus created for testing.

2.3.2. Feature Extraction

We extracted from the created tactile dataset commonly used features in time series
analysis, including the following 10 features: (1) MEAN, representing the mean; (2) stan-
dard deviation (STD), representing the dispersion of values around the mean; (3) median
absolute deviation (MAD); (4) RMSE, the energy characterizing the power of the signal;
(5) CHROMA: a representation of the musical characteristics related to the tonality and
harmony of an audio signal; (6) SPECTRAL_CENTROID: a measure of the position of the
center of gravity of the spectral energy distribution of a signal, calculated as the weighted
average of the frequencies in the signal power spectrum, where the weights are given by
the spectral magnitude at each frequency; (7) SPECTRAL_BANDWIDTH: a measure of
the spread of spectral energy distribution in a signal, i.e., the frequency range of a signal;
(8) SPECTRAL_ROLLOFF: a feature representing the frequency below which a given per-
centage of the signal’s total spectral energy is concentrated; (9) PERCEPTUAL: a feature
reflecting the perceptual properties of the human system associated with each sensory
modality useful to characterize the quality or perceptual properties of a signal; and (10) the
zero crossing rate (ZCR) that measures the frequency at which a signal changes polarity.
We also extracted four features obtained by applying the Fast Fourier Transform (FFT) to
the S, X, Y, and Z signals. The two resulting datasets are named SMMRP (10 features) and
FFT (4 features) in Figure 1. These features are extracted from the sound and vibrotactile
signals for 1 s and for 2 s sampling periods.

2.3.3. Feature Selection

Feature selection is a key data preparation step aiming to reduce the number of features
to be included in modeling, by selecting the most relevant features for classification. It
can help determine if there are features that are less useful, and thus could be potentially
removed to reduce the model complexity. Using a random forest algorithm, we identified
in the 10 feature-SMMRP dataset (Figure 2a) that the features STD, MEAN, MAD, RMSE
and PERCEPTUAL (Figure 2b) are those that contribute the most to predictions. As such,
we chose to continue our work with these 5 features (denoted SMMRP in the rest of the
paper and SMMRP (5 features) in Figure 1) along with the four FFT features. However,
we noticed that some of these features are correlated. To address this issue, as well as to
further reduce the complexity of the dataset, we used PCA on these features (_PCA datasets
in Figure 1). As shown in Figure 1, in all the cases we have chosen the first 3 principal
components that capture roughly 95% of the total variance when we only use the SMMRP
features, roughly 97% for the FFT features and 100% when all features are used together
(SMMRPFFT) for a sampling period of 2 s.
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Figure 2. (a) Sample of data; and (b) feature importance in the dataset using SMMRP features.

Figure 3 shows the data dispersion for the various texture classes using PCA. One can
notice that, for all datasets—SMMRP (Figure 3a), FFT (Figure 3b) and their combination
SMMRPFFT (Figure 3c)—certain classes are easily separable (distinguished), for example
“aluminum_film”, in light red, or “fabric-3”, in purple, while others, like “fabric-1” in
dark blue and “toy_tire_rubber” in dark red overlap, as do “fabric-2” in dark green and
“moquette-1” in dark orange. These latter classes will therefore be more difficult to classify
correctly, regardless of the classifier used and of the features selected. One can also notice
that the separability is improved when the combination of features (SMRRPFFT) is used, in
Figure 3c.
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2.4. Data Classification

Available data are split in training (80%) and testing (20%) sets and the F-Score is used
as a performance measure along with the computation time (in ms). For classification, we
chose a series of classifiers based on the nature of the data, their use in the literature and their
proven performance across various domains. These include Gaussian Naive Bayes (NB)
classification, decision trees (Tree), random forest (RForest)—consisting of 1000 decision
trees—support vector machines (SVM), the K-nearest-neighbors (KNN) algorithm, logistic
regression (LG), neural networks (NN), a 2-layer MLP [12], XGBOOST (XGB) [13] and the
Extreme Gradient Boosting with Random Forest (XGBRF).

3. Results

To evaluate the performance of our solution, we performed various tests with the
chosen algorithms, mostly with default parameters and for the various combinations of
features. In the first place, we studied the impact of the sampling period on the results.
Table 1 shows that for all algorithms and combinations of features the performance in terms
of F-Score is higher for a 2 s sampling (by 3.7%), but this comes at the price of an increased
evaluation time by an average of 29.48% (6.2 ms) for all features and algorithms tested. We
continued the remainder of tests with a sampling period of 2 s. In an attempt to identify
the best combination of features, we compared the F-score and the evaluation time for all
the chosen algorithms when using three features for all datasets (after PCA). While the fact
that we use a only three features leads to slight decrease in performance (average of 1.66%
over all algorithms) with respect to using the five most important features, i.e., SMMRP
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(five features), it also saves on average 41.5% of the time (or 15 ms), and thus represents a
good compromise between the complexity of the task reflected by the number of features,
the classification performance and the computation time.

Table 1. Comparison for sampling rate of 1 s (1s-) and 2 s (2s-) in terms of F-Score.

NB KNN Tree RForest SVM LG NN XGB XGBRF Average

1s—SMMRP-PCA (5 feat.) 0.95 0.94 0.94 0.95 0.94 0.91 0.96 0.97 0.95 0.95

1s—FFT-PCA (4 feat.) 0.95 0.95 0.94 0.95 0.93 0.94 0.95 0.95 0.94 0.94

2s—SMMRP-PCA (5 feat.) 0.98 0.99 0.97 1 0.98 0.97 1 0.98 0.99 0.984

2s—FFT-PCA (4 feat.) 0.99 0.96 0.98 0.99 0.96 0.96 1 0.99 0.99 0.980

Figure 4a shows that the use of FFT features (in orange) lead to a lower performance
and the highest average performance is obtained by the combination all features (SMM-
RPFFT, in gray). Although normally it is not advisable to use graphs that are not to the
actual scale, i.e., normally the Y axis should start at 0, we have chosen scaling in the figure to
better highlight the slight differences in performance between the results obtained. Accord-
ing to the results in Figure 4c, the use of data from the accelerometer only (XYZ_, yellow)
performed better with all models when compared to sound data only (S_, brown). Sound
data only resulted in poorer performance, in particular with KNN, SVM and LG classifiers.
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The best performance is achieved using the combination of the two sources of tactile
data (SXYZ_, green; the gray and green bars represent the same information, but Figure 4a,c
have different scales). The higher performance comes to the price of a slightly higher
average evaluation time (Figure 4d) of the order of 2.8 ms with respect to the FFT features
(the fastest on average). On average, LG and Tree offer the best compromise in terms
of performance and evaluation time. The best overall performance, computed as an
average over all feature combinations, is associated with XGBRF (F-score = 0.91) and
the lowest time with LG and Tree (0.35 ms), while the highest time is associated with
RForest. These findings suggest that the fusion of SMMRP and FFT features yields more
powerful composite features capable of achieving good predictions while maintaining a
low evaluation time and thus representing good candidates for real-time implementations
for this specific dataset. However, it is important to verify that this performance generalizes
to other similar tactile datasets to confirm the robustness of this novel feature combination.

Another series of tests was aimed at studying the performance by type of texture. We
analyzed the confusion matrices obtained for all algorithms and all feature combinations.
Table 2 shows the aggregate correct and wrong predictions, as a percentage over the total
number of samples from each texture class and as an average over all the algorithms tested,
for the SMMRPFFT features and for the 12 classes. One can notice that among the 12 classes,
“toy-rubber-tire” (worst performance), “moquette-1”, “fabric-2”, and the two samples of
“sparkle-paper” are more difficult to classify. These results are coherent with Figure 3, in
which these classes are overlapping. Among the tested algorithms, Tree and NN make the
most wrong classifications and XGBRF the least.

Table 2. Correct and wrong predictions per texture type (material) using SMMRPFFT features.

Material Correct Predictions (%) Wrong Predictions—Material
Type, Algorithm (%)

fabric-1 100

aluminium_film 100

fabric-2 90 moquette-1, XGB (5%), toy-tire-rubber, NN (5%)

fabric-3 100

moquette-1 77 fabric-2, NN, LG, SVM (16%), fabric-4, NN (7%)

moquette-2 100

fabric-4 100

sticky fabric-5 100

sticky-fabric 100

sparkle-paper-1 95 sparkle_paper-2, LG (5%)

sparkle-paper-2 92 sparkle_paper-1, Tree (8%)

toy-tire-rubber 55 fabric-1, LG, SVM, RForest, Tree, kNN, NB (44%)

4. Discussions and Conclusions

We have successfully implemented and validated a learning method that achieves
high performance (F-score) in classifying textures measured by tactile sensors. We have
demonstrated the importance of selecting and extracting features to enhance classifica-
tion performance. Furthermore, we demonstrated that the choice of sample period is a
significant aspect of time series classification, with an important impact on classification
accuracy. Longer sampling periods (2 s. vs. 1 s) provide more information for classification,
leading to higher performance (average of 3.59%) but also augment the evaluation time
by an average of 29.48% over all features and models. Finally, we demonstrated that the
balance between performance and evaluation time is crucial for informed decisions when
selecting a classification model. For the selected dataset, we identified the XGBRF to offer
the best compromise between performance over all material types and computation time,
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while kNN represents the next best option (1% improvement in performance at the cost of
2.13 ms increase in time with respect to XGBRF for SMMRFFT).
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